-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.
-
About University of Galway
About University of Galway
Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
University of Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at University of Galway
We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.
-
Alumni & Friends
Alumni & Friends
There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.
-
Community Engagement
Community Engagement
At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
April Researchers advance understanding of Parkinson’s Disease
Researchers advance understanding of Parkinson’s Disease
Findings are first in the field and will pave the way for the development of new therapeutic devices
Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at University of Galway, together with collaborators at the Medical University of South Carolina and Vienna University of Technology, have for the first time identified critical targets in the molecular signature of Parkinson's disease across different stages of the disease's progression.
The results of their research are published in the prestigious journal PNAS Nexus.
More than 10 million people are living with Parkinson's disease worldwide, making it the second-most common neurodegenerative disease after Alzheimer's disease.
The complete molecular signature of Parkinson’s, however, remains unclear. In particular, untangling molecules related to the disease called glycans has been challenging due to their complexity and lack of analytical tools. Glycans (sugars) are found on the cell's surface and are fundamental in ensuring the correct flow of information between cells. Glycans participate in cell-to-cell communication by attaching to other molecules, such as fats (lipids) and proteins.
The research published in PNAS Nexus provides a complete characterisation of the glycans associated with the connections in the brain that are affected by Parkinson’s disease.
These findings can potentially advance the development of glycan-focused therapeutic devices to treat and diagnose Parkinson’s.
Professor Abhay Pandit, Scientific Director of CÚRAM and project lead, said: "The work presented here will act as a valuable resource for subsequent investigations into the impact of brain glycans on neurodegeneration. It has been established that modifications in glycans have a bearing on other physiological aspects, which could potentially serve as catalysts for additional degeneration. Our study has specifically focused on Parkinson's disease, but there are other neurodegenerative conditions for which the glycan environment remains unexplored, and this research will therefore lay the groundwork for future studies on other diseases."
Ana Lúcia Rebelo, lead author of the study, said: "In this study, we aimed to specifically look at a side of the Parkinsonian brain that was previously unexplored – the glycome. This research is a significant step towards understanding, in-depth, what is happening in this life-altering condition and exploring other therapeutic avenues that could target previously unaccounted-for changes. Emerging technologies currently in development will be instrumental in expanding upon the preliminary ‘glyco’ characterization that has been initiated with this research, culminating in further discoveries in future."
Ends