-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.
-
About University of Galway
About University of Galway
Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
University of Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at University of Galway
We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.
-
Alumni & Friends
Alumni & Friends
There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.
-
Community Engagement
Community Engagement
At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
August NUI Galway CÚRAM researchers discover way to switch on and speed up tendon healing
NUI Galway CÚRAM researchers discover way to switch on and speed up tendon healing
Implantable stimulator device combines with body power to treat disease, damage and sports injury
Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, have shown how the simple act of walking can power an implantable stimulator device to speed up treatment of musculoskeletal diseases.
The results of have been published in the prestigious journal Advanced Materials.
The research establishes the engineering foundations for a new range of stimulator devices that enable control of musculoskeletal tissue regeneration to treat tendon damage and disease and sports injuries, without the use of drugs or external stimulation.
Lead researcher on the study, CÚRAM Investigator Dr Manus Biggs, said: “One of the most exciting parts of our study is that these implantable devices may be tailored to individual patients or disorders and may show promise in accelerating the repair of sport-related tendon injuries, particularly in athletes.”
The study investigated whether electrical therapy, coupled with exercise, would show promise in treating tendon disease or ruptures. It showed that tendon cell function and repair can be controlled through electrical stimulation from an implantable device which is powered by body movement.
Dr Marc Fernandez, who carried out the principal research of the study at CÚRAM, said: “Successful treatment of tendon damage and disease represents a critical medical challenge.
“Our discovery shows that an electrical charge is produced in the treatment target area - the damaged or injured tendon - when the implanted device is stretched during walking. The potential gamechanger here is like a power switch in a cell - the electrical stimulus turns on tendon-specific regenerative processes in the damaged tendon.”
The stimulator device uses a fabric like mesh - known as a piezoelectric material - that produces electricity when stretched or put under mechanical pressure. It is made using a scaffold of nano-fibres which are one-thousandth of the thickness of a human hair
Dr Fernandez added: “We presented an implantable, electrically active device capable of controlling tendon regeneration and healing. Importantly, our research improved the therapeutic performance of the device by enhancing its structure, piezoelectric characteristics, and biological compatibility.
“We also evaluated the individual influence of mechanical, structural, and electrical cues on tendon cell function and were able to show that bioelectric cues contribute significantly in promoting tendon repair.”
Dr Biggs added: “This unique strategy of combining a device which is powered through body-movement and which can induce accelerated tendon healing is expected to significantly impact the field of regenerative devices, specifically in the area of sports or trauma associated injuries.
“These devices are cost-effective, relatively easy to implant and may pave the way for a whole new class of regenerative electrical therapies.”
The research was funded by Science Foundation Ireland and in particular the SFI-BBSRC Partnership programme.
Read the full study in Advanced Materials here: https://doi.org/10.1002/adma.202008788
CÚRAM’s research focuses on developing diagnostic devices, biomedical implants, cell-device and drug-device combination products to address unmet clinical needs.
The recent announcement of a €46million reinvestment in CÚRAM by Science Foundation Ireland in February 2021, demonstrates the Government's strong commitment to the MedTech industry in Ireland, supporting the continuation of substantial academic, industry and clinical collaborations that are central to CÚRAM's work.
Ends