-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.
-
About University of Galway
About University of Galway
Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
University of Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at University of Galway
We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.
-
Alumni & Friends
Alumni & Friends
There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.
-
Community Engagement
Community Engagement
At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
February 2017 New formula to help scientists advance artificial muscles, soft robotics – and Batman’s bat cape
New formula to help scientists advance artificial muscles, soft robotics – and Batman’s bat cape
NUI Galway publish new mathematical formula on soft ‘dielectric’ membranes
Applied mathematicians from NUI Galway have today published a formula which will be of huge benefit to materials scientists and soft robotics engineers. The team have worked out how much voltage and deformation soft ‘dielectric’ membranes can take before they break.
Soft ‘dielectric’ membranes are used on the cutting edge of science to develop artificial muscles, soft robotics, energy harvesters and ‘smart clothes’. These lightweight soft materials deploy and stiffen when put under high voltage, but until now, there has been a big challenge in knowing what the breaking point of these membranes is.
Professor Michel Destrade, at the School of Mathematics, Statistics and Applied Mathematics in NUI Galway explains: “If you can remember the scene in Batman Begins where this huge bat cape emerges from a tiny folded piece of material, that’s the kind of technology which is being developed currently in some labs around the world, especially in Harvard University and in China. It’s the electric voltage that allows these special membranes to expand.
Until now it was not fully understood how much voltage these membranes could sustain. Some are a millimetre thick, but if they thin out too much when they stretch with the voltage, it can lead to a short-circuit and a catastrophic breakdown. We hope our mathematical formula will help advance science in this area.”
Dr Giuseppe Zurlo of NUI Galway, co-author of the study, adds: “The very near and real applications for these materials are artificial human muscles, or soft robots which can help organs function.”
Together with collaborators at Politecnico di Bari in Italy, the mathematicians worked out a simple formula to link the physical properties of the membrane to the breakdown amount of stretch. “The final equation is very compact”, says Dr Zurlo, “and it will provide most useful safety guidelines for future experiments on these fascinating materials.”
The problem had stumped material scientists for years and its solution is published today in the prestigious Physical Review Letters. Professor Destrade and Dr Zurlo are now working on experiments with engineering colleagues at Xi’an Jiaotong University in China.
To view the full paper in Physical Review Letters visit: https://journals.aps.org/prl/accepted/5f076Y18Kbb1ac4ed8f93f49a3ee764f0dd938eb8 or http://www.maths.nuigalway.ie/~destrade/Publis/destrade_109.pdf
Video link of a membrane deforming under a voltage: https://www.dropbox.com/s/ybk5am3s7pmcdwd/video.avi?dl=0
-Ends-