-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.
-
About University of Galway
About University of Galway
Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
University of Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at University of Galway
We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.
-
Alumni & Friends
Alumni & Friends
There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.
-
Community Engagement
Community Engagement
At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
January 2016 Galway Astronomers Solve The Mystery Of Flares From The Crab Nebula
Galway Astronomers Solve The Mystery Of Flares From The Crab Nebula
University of Galway lead an international collaboration consisting of astronomers from the US and France to take optical and gamma-ray observations of the Crab Nebula
The Centre for Astronomy at the School of Physics in University of Galway are the lead researchers and authors of a recent international study published today (01 January 2016) in one of the world’s leading primary research journals in astronomy and astrophysics, Monthly Notices of the Royal Astronomical Society (MNRAS).
A joint Irish-French-US set of observations have led to a better understanding of the unexpected flaring activity seen coming from the Crab supernova remnant. The project led by Irish astronomer Professor Andrew Shearer from the Centre of Astronomy at University of Galway, involved using the University of Galway developed, Galway Astronomical Stokes Polarimeter (GASP) polarimeter on the 200” Palomar telescope in California. Their work for the first time tied together changes in the optical polarisation with apparent changes in the gamma-ray (high energy x-ray) polarisation.
A supernova remnant occurs when a star explodes and spews its innards out across the sky, creating an expanding wave of gas and dust known as a supernova remnant. Arguably, the most famous of these remnants is the Crab Nebula, which exploded in 1054. The Crab Nebula has been studied extensively over the last fifty years and recently found to be the source of gamma-ray and X-ray flares.
It is not yet known where the flares are coming from and in an effort to understand their origin University of Galway led the research programme of optical observations, which were carried out in association with gamma-ray observations using the European Space Agency’s (ESA) Integral gamma ray observatory. Uniquely both studies looked at the polarisation of both the light and the gamma rays in order to understand the origin of these flares.
For many years, the flux from the whole Crab Nebula was expected to be constant, in such a way that the Crab was always thought of as a ‘standard candle’ (known brightness). Some doubts were cast on this status from high energy gamma-ray and hard X-ray observations made by the Fermi and INTEGRAL satellites, both European Space Agency satellite missions used to detect energetic radiation that comes from space. Since 2007 strong high energy flaring activities have been detected by the Agile and Fermi gamma-ray telescopes at a rate of about 1 per year. Although, currently they have no clear origin, these high energy flares show the complex timing behavior of this source.
The University of Galway team published observations of the polarisation of optical and hard X-ray photons from the Crab Nebula and pulsar system using the GASP, which was installed on the 200” Hale telescope at Mount Palomar in California, the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) and the International Gamma-Ray Astrophysics Laboratory satellite, Integral. The University of Galway study when compared to the Integral observations show that the polarisation of the optical light and gamma-ray seem to change in the same way, which was an unexpected result.
Professor Andrew Shearer from the School of Physics at the Centre of Astronomy in University of Galway, said: “Our studies show how Galway’s GASP polarimeter will be important for future observations of these high energy astronomical sources. After the recent Government announcement that Ireland will join the European Southern Observatory (ESO) we hope to contribute to future world class telescope projects such as the European Extremely Large Telescope.”
Indeed, a change in the optical polarisation angle has been observed by this work, from 109.5° in 2005 to 85.3° in 2012. On the other hand, the gamma-ray polarisation angle changed from 115° to 80° during a similar period. Strong flaring activities at higher gamma-ray energies have been detected in the Crab nebula during this period and magnetic reconnection processes have been suggested to explain these observations.
The change in the polarised optical and gamma-ray emission of the Crab Nebula/pulsar system as observed, for the first time, by GASP and the Integral satellite may indicate that magnetic reconnection is possibly at work in the Crab Nebula. The study also reported for the first time, a non-zero measure of the optical circular polarisation from the Crab pulsar + knot system. These results outline the strong scientific potential of polarimetric studies in particular in systems like the Crab Nebula where magnetic fields play a key role.
The research was part-funded by a Ulysses grant for Irish-French collaboration.
To read the study published in MNRAS visit: http://arxiv.org/pdf/1511.07641v1.pdf
ENDS
Featured Stories
Press Office
+353 (0) 91 493361
Follow @nuigalwaypress