-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.
-
About University of Galway
About University of Galway
Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
University of Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at University of Galway
We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.
-
Alumni & Friends
Alumni & Friends
There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.
-
Community Engagement
Community Engagement
At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
October 2017 Breakthrough in Potential New Treatments for Nerve Damage
Breakthrough in Potential New Treatments for Nerve Damage
New research by CÚRAM, The Science Foundation Ireland Centre for Research in Medical Devices, based at University of Galway, will allow for improved treatment options for patients with nerve damage. The study was recently published in the prestigious Advanced Functional Materials journal.
Treatment of peripheral nerve injuries that can result in the loss of motor or sensory function remains a major problem worldwide. In recent years, different strategies have been used in an attempt to improve regeneration and functional recovery in the injured peripheral nervous system, which consists of the nerves outside of the brain and spinal cord, using artificial nerve grafts. However, there has been little investigation into changes that occur at the molecular level as a result of these interventions.
The study explored the differences in peripheral nerve repair that result from using biomaterial conduits (artificial nerve grafts) to support recovery, compared with the use of two different types of conduit-materials, namely collagen and the chemical compound, polymer PLGA, in an effort to understand fundamental differences in their repair mechanisms at the molecular level in the early stages of repair. Both collagen and PLGA have previously provided the desired result for the repair of damaged nerves.
Past attempts to improve artificial nerve grafts have often failed to translate to the clinic, due to this limited understanding of the biological response. Recovery of damaged nerves in the peripheral nervous system is quite robust with the use of suturing, and nerves are known to be able to regenerate across relatively short distances, less than 0.5 mm. For treatment of larger gaps between damaged nerves however, the primary treatment methods used are auto/allograft or the use of hollow artificial nerve grafts. Autograft (the use of the patients own tissue), despite being the gold standard for repair, has a number of limitations. These include limited supply of donor tissue, risk of neuroma formation (a disorganised growth of nerve cells at the site of a nerve injury), mismatch in size, and the distribution of nerve tissue in the central nervous system between the donor nerve and the injury site.
The results presented in the study support the hypothesis that regeneration in large peripheral nerve injuries is affected by the material used. The team found that each material selectively activates different regenerative pathways and alters different biological functions throughout the artificial nerve grafts. The analysis also highlights some of the existing deficiencies in conduit-mediated repair in comparison to the use of the patients own tissue.
Professor Abhay Pandit, Scientific director of CÚRAM and lead author of the research paper, explains: “Numerous studies have identified that the choice of conduit material used can have an influence on the level of nerve regeneration. We now have a clearer understanding of how the body responds to the use of these two biomaterials, which paves the way for the development of specific peripheral nerve regeneration strategies using biomaterial conduits, based on the biomaterial used. Our findings suggest that by supplementing the expression of certain proteins on the biomaterial of choice, we can potentially attain the regeneration equivalent or even superior to autograft using biomaterial conduits.”
This study focused on a non-critical nerve injury and did not incorporate the effect of increasing gap distance on the regenerative response. To address this question, further research on the effect of increasing gap distance on the regenerative response is underway at University of Galway, which will be published at a future date.
To read the full study in Advanced Functional Materials, visit: http://onlinelibrary.wiley.com/doi/10.1002/adfm.201702170/abstract
-Ends-