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A B S T R A C T

Rewetting is accepted as an effective technique in restoring degraded peatlands. However, it may adversely
impact water quality, particularly in nutrient-rich peatlands. The aim of this study was to review water quality
models applied to peatlands, with a focus on evaluating the performance (such as stability and accuracy) and
complexity of the models. In a systematic review of published studies from 01/01/2003 to 10/12/2023, out of
3618 published studies on peatlands and nutrient modelling, only 23 studies applied water quality models to
predict the evolution and distribution of nutrients of peatlands by using 16 different water quality models. Out of
the 23 studies, only 1 predicted the nutrient concentration and transport of a rewetted peatland. Among the 16
models evaluated, only the mixed mire water and heat (MMHW) model was capable of considering the inherent
heterogeneity in peatland characteristics. The HYDRUS 1D/2D model is effective at predicting nitrogen species,
despite encountering challenges in some studies due to the complex nature of the peat environment. To enhance
the predictive power of water quality models, it is important to consider all the processes that can affect the
concentration of nutrients in peatlands such as oxidation of carbon, the nitrogen cycle, decay/production rate for
nutrients, adsorption/desorption of nutrients in the soil, and the advection of nutrients due to the influence of
ground water and surface water. To date, no peatland-specific water quality model has been developed to
simultaneously predict DOC, nitrogen and phosphorus in peatland ecosystems.

1. Introduction

Peatlands are estimated to cover about 3 % of the earth’s terrestrial
land area but store up to 30 % of the total soil carbon (Cirulis et al.,
2022; Escobar et al., 2022). Pristine peatlands play a major role in
climate change dynamics (O’Connell et al., 2021) and provide important
ecosystem services such as the provision of habitats for biodiversity
(Minayeva et al., 2017; Renou-Wilson et al., 2019), carbon sequestration
and water purification (Andersen et al., 2017; Tanneberger et al., 2021).
It is estimated that 50 % of European peatlands have been degraded due
to drainage (Andersen et al., 2017; Tanneberger et al., 2021). Although
restoration of degraded peatlands by rewetting is considered to be an
effective tool to recover their hydrological and ecological conditions
(Menberu et al., 2017; Laine et al., 2019), it may pose a risk to water
quality, particularly in the initial stages of restoration of nutrient-rich
peatlands (Harpenslager et al., 2015; Koskinen et al., 2017; Healy
et al., 2023). Modelling of the potential impacts of rewetting on water

quality is therefore of great importance when designing a re-wetting
scheme.

Although much research has been conducted on peatland dynamics,
there is a dearth of research on models to predict the water quality of
peatlands, especially for rewetted peatlands. Hydrological models help
gain a better understanding of hydrological phenomena and how
changes in the physical characteristics of a watershed may affect the
hydrological cycle (USEPA, 2017). Conversely, water quality models are
mathematical representations of pollutant/nutrient fate and transport
within a water body or from land-based sources to a water body (Cho
et al., 2020). The majority of the water quality models depend on hy-
drological models, as the modelling results of ground/surface water flow
of hydrological models are used as inputs in water quality models. Water
quality modelling is capable of predicting future water quality dynamics
resulting from different management practices (Loucks & Van Beek,
2017) on rewetted peatlands. Therefore, they are potentially a valuable
tool for those involved in the management of peatlands.
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Hydrological models may be classified as either empirical (metric),
conceptual, or physical (process-based) models (Wheater et al., 2008;
Devia et al., 2015; USEPA, 2017). Empirical models, sometimes referred
to as data-driven models or observation-oriented models, use non-linear
statistical relationships between inputs and outputs which extract in-
formation from the existing data and ignore the specific processes of
hydrological systems (Kokkonen et al., 2001). Conceptual models, also
known as grey-box models, use simplified mathematical equations to
conceptualise the hydrological processes (Jaiswal et al., 2020) and
interpret outputs by connecting simplified components in the hydro-
logical processes (USEPA, 2017; Singh, 2018). Physical models, or
process-based or mechanistic models, are based on the underlying
physics of the specific hydrological processes (Sitterson et al., 2018).
They use “state” variables which are measurable and are functions of
both time and space (Devia et al., 2015; Singh, 2018). They require
complex information about the hydrological system and, due to the large
number of parameters and the fine-scale spatial discretisation, their
parameterisation requires a very large amount of data (Cirulis et al.,
2022).

Hydrological models can also be categorized based on how they
represent the catchment spatially. These models consider the variability
in geology, soil, vegetation and topography, and how they affect flow of
water and nutrients in the catchment. Spatially, hydrological models can
be divided into lumped models, semi-distributed models, and distrib-
uted models (USEPA, 2017; Singh, 2018; Sitterson et al., 2018). Lumped
models do not consider spatial variability and consider the catchment as
a single homogenous unit (Wheater et al., 2008; Singh, 2018). Semi-
distributed models are variations of lumped models, with features of
distributed models, in which the input parameters are allowed to vary in
space partially by dividing the catchment into several sub-catchments.
Distributed models are the most complex because they consider the
spatial variability in catchment input parameters (USEPA, 2017; Sit-
terson et al., 2018). Distributed models divide the model domain into
smaller computational elements or cells with each individual element/
cell having distinct assigned input parameters (Rinsema, 2014).
Distributed models predict the hydrological processes at all computa-
tional cells (Singh, 2018). Due to the complexity of distributed models, a
large amount of input data is required, and the model can produce the
highest accuracy of model results (Singh, 2018).

Rewetting of peatlands increases the water table level (Lundin et al.,
2017; Sutikno et al., 2018) and, depending on the topography and
nutrient status, may lead to flooding, overland flow, as well as transport
of nutrients. The transport of nutrients can be predicted by appropriate
water quality models, which can aid in decision making as to which
rewetting technique (drain blocking, bunds, etc.) has the least impact on
water quality (Loucks & Van Beek, 2017). Water quality models can be
classified according to the governing equation (i.e., physically based,
conceptual, or empirical), type of solute or dispersed phase (such as
nutrients, dissolved organic carbon (DOC), sediments, salts, etc.), area of
application (catchment, groundwater, river system, coaster waters, in-
tegrated), and spatial analysis (lumped, semi-distributed, or distributed)
(Tsakiris& Alexakis, 2012). In addition, nonlinear and empirical models
generated using artificial intelligence (AI) techniques have been used in
water quality modelling and monitoring (Wu et al., 2014; Khullar &
Singh, 2021). These include models based on artificial neural network
(ANN), adaptive neuro-fuzzy inference systems (ANFIS), and support
vector machines (SVM) (Khullar & Singh, 2021).

Many peatlands comprise a two-layer structure system, with upper
and lower layers varying significantly in both structure and functions
(Ingram, 1978). The upper thin (<0.5 m) layer (“acrotelm”) experiences
seasonal fluctuations in water saturation, allowing for rapid water
movement and litter decomposition. Below this lies the thick (≫1 m)
layer (”catotelm“) which remains permanently saturated and has
significantly slower water flow and peat decomposition rates (several
orders of magnitude) compared to the acrotelm (Belyea & Baird, 2006;
Ingram, 1978). Peatlands are therefore considered to be ‘complex

adaptive systems’ (CAS), where internal dynamics (autogenic) and
external (allogenic) processes control their eco-hydrological in-
teractions (Mozafari et al., 2023). Belyea & Baird (2006) identified four
distinctive features of peatlands as characteristic of CAS: spatial het-
erogeneity, localized flows, self-organizing structure, and nonlinearity.
Further to the concept of the diplotelmic (two-layered) peatland model,
Morris et al. (2011) proposed the concept of ‘hot spots’ and ‘cold spots’
in which the horizontal heterogeneity of peatland is represented. Morris
et al. (2011) defined ‘hot spots’ as zones within the peatland with higher
rates of ecological, hydrological and biogeochemical processes
compared to the rest of the peatland (i.e ‘cold spots’, zones that expe-
rience slower rate of ecological, hydrological and biogeochemical pro-
cesses). Successful implementation of models in peatlands requires the
model to be spatially detailed, enabling larger scale patterns to develop
from the interactions among smaller scale units and external constraints,
and forces should be explicitly represented, allowing historical effects to
become integrated into the system’s physical structure (Belyea & Baird,
2006). Therefore, any hydrological and water quality models selected
for the purpose of modelling peat dynamics must consider these key
features. Although some models have been used to model both peatland
hydrology and water quality, these models may not be specifically
designed for peatlands. In addition, the resolution at which these models
are applied may be too coarse if applied to peatland catchments, and
ecohydrological feedback that operate at smaller scales may be ignored
(Baird et al., 2011). It is therefore imperative that existing water quality
models are evaluated to ascertain their appropriateness in peatland
water quality modelling applications.

The objective of this paper is to review the existing water quality
models, focusing on their structure, accuracy and suitability in peatland
(especially rewetted peatlands) water quality modelling.

2. Materials and methods

The review process, summarized in Fig. 1, commenced with a sys-
tematic search of literature using the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) (Page et al., 2021)
approach as used in Mozafari et al. (2023). The review process was
performed in four steps. The first step included the search of string of
keywords (peatland OR bog OR fen OR mire OR (peat AND swamp*))
within titles, abstracts, and keywords of published work on the Web of
Science (WoS) and Scopus databases from January 1, 2003 and
December 10, 2023. This step was performed to get the general overview
of the work done regarding peatlands over last two decades. The first
step returned 59,385 and 25,069 publications from WoS and Scopus,
respectively. These publications were screened by limiting the search to
only articles published in the English language. This reduced the number
of articles to 56,126 and 18,800 from WoS and Scopus, respectively. The
second step of further screening included a second string of keywords (in
addition to those used in the first step) used within titles, abstracts and
keywords of published work: (peatland OR bog OR fen OR mire OR (peat
AND swamp*)) AND (water quality OR nitrogen OR phosphorus* OR car-
bon* OR ammonium*). This step returned 11,798 and 3,395 articles from
WoS and Scopus, respectively. The third step added another string of
keywords within titles, abstracts and keywords of published works:
(peatland OR bog OR fen OR mire OR (peat AND swamp*)) AND (water
quality OR nitrogen OR phosphorus* OR carbon* OR ammonium*) AND
(modelling OR model OR simulation). This yielded 2,678 and 940 articles
from WoS and Scopus, respectively. The fourth step involved manually
reviewing the title, abstract and the keywords to select the most relevant
and appropriate articles regarding the scope of this paper (i.e., water
quality modelling). The fourth step yielded 35 and 29 articles from WoS
and Scopus, respectively. These data were combined, and 14 duplicate
articles were removed by using Bibliometric package in the R program
language, leaving 50 unique published articles. Further screening was
performed by limiting the relevant articles to published works that
applied water quality models on peatlands only. This produced 23
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Fig. 1. Summary of the systematic search using the PRISMA approach.
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published articles with 16 different water quality models.

2.1. Performance evaluation criteria (PEC) of the computational models

The water quality models are evaluated according to three criteria:
(1) performance (2) ability to incorporate the complexity of the peat-
land, and (3) numerical stability.

2.1.1. Model performance
The most widely used model performance measure (PM) is the sta-

tistical performance measure (SPM), which is used to quantify the per-
formance of water quality models in describing the “closeness” of the
simulated values to observed data (Moriasi et al., 2015). As no single PM
was used across all papers evaluated, in the current paper the following
SPMs are used: the coefficient of determination (R2), root mean square
error (RMSE), Willmott index of agreement (d), Nash-Sutcliffe efficiency
(NSE), percentage bias (PBIAS), and relative error (RE). The R2 describes
the degree of collinearity between simulated and observed data. RMSE
measures the difference between the predicted and observed values
(Moriasi et al., 2015). The index of agreement (d) was developed by
Willmott (1981) as a standardized measure of the degree of model
prediction error (Moriasi et al., 2015). The relative magnitude of the
residual variance is determined by NSE (Moriasi et al., 2007). PBIAS is
the tendency of the simulated data to be larger or smaller than the
observed data (Moriasi et al., 2015). RE is the variance that occurs be-
tween the simulated and the observed data expressed in terms of per-
centages. Table 1 presents the critical values of the performance
evaluation criteria.

2.1.2. Ability to incorporate the complexity of the peatland
Processes characterizing peatlands as “complex adaptative systems”

must be considered in the application of models in peatlands (Belyea &
Baird, 2006). The ability of a model to incorporate the complex char-
acteristics of peat soils was analysed based on how the various models
dealt with the spatial heterogeneity of peatlands and how the structure
and functions of the acrotelm and catotelm zones of the peat were
distinguished from each other.

2.1.3. Numerical stability
Only the models that employ the transport equation (advection/

convection–dispersion) to predict nutrient concentration and transport
were considered. This is because only the process-based models specif-
ically formulate the particular processes of nutrient transport in peat-
lands in terms of such as advection, diffusion and dispersion (Khan et al.,
2022), by related transport equations. The stability of water quality

model depends on the numerical solution method employed in solving
the governing transport equations. A numerical solution which does not
magnify the errors that appear in the course of numerical solution
processes could be considered as stable (Ataie-Ashtiani & Hosseini,
2005).

3. Results and discussion

3.1. Location, scale and type of water quality models

Ninety-six percent of the 23 identified published studies were con-
ducted in Europe and North America (Fig. 2), while the combined
peatland area of Europe and North America accounts for an estimated
44.1 % of the global peatland cover (Xu et al., 2018). Although Asia
accounts for 38.4 % of the global peatland cover (Xu et al., 2018), there
is a dearth of research on peatland water quality modelling in that
location. The scale of model application spatially ranges from catch-
ments to laboratory-based simulations, as presented in Table 2. Four of
the studies (Jutebring Sterte et al., 2021; Lauren et al., 2021; Whitfield
et al., 2010; Xu et al., 2020) were conducted on multiple catchments,
two studies (Khan et al., 2022; McCarter et al., 2023) were laboratory-
based (miniature peatland) simulations, whilst one study (Yurova
et al., 2008) predicted the concentration and fluxes of DOC in mire at
laboratory- and catchment-scale. The remaining sixteen studies were
conducted on a single catchment.

Although some studies (Harpenslager et al., 2015; Lundin et al.,
2017; Zak & Gelbrecht, 2007) have reported observations of high
nutrient concentrations in water in the early stages of rewetting or
restoration of degraded peatlands, little research has been carried out on
the modelling of water quality in rewetted peatlands. Among the iden-
tified published studies in this review, only one study (Grygoruk et al.,
2015) applied water quality model to a rewetted peatland (fen) in
Poland, in which the temporal pattern of potential groundwater and
surface water eutrophication was predicted.

Among the 23 published studies, 16 different water quality models
were identified. With regards to model type, in terms of the type of
governing equations and related assumptions, 15 of the water quality
models are process-based models and 1 model is a conceptual model. On
the basis of spatial properties, 12 of the water quality models are
distributed models, 3 are semi-distributed models, and 1 is a lumped
model (Table 2). The most widely used water quality models for pre-
dicting the concentration and export of nutrients on peatlands are the
Integrated Catchments model (INCA) and HYDRUS 1D/2D (Table 2).
INCA is a family of process-based and semi-distributed models
comprising an integrated catchment model for carbon (INCA-C) (Futter

Table 1
Performance evaluation criteria using R2, NSE and PBIAS (adapted from Moriasi et al. (2015)) at catchment-scale (>10 ha) and field-scale (<10 ha) RE (adapted from
Ali & Abustan (2014)).

Metric Range Output variable Performance evaluation criteria

Catchment-scale Very good Good Satisfactory Not satisfactory

R2 0.0 to 1.0 Sediment

Nutrients

>0.80
>0.7

0.65 < R2 ≤ 0.80
0.6 < R2 ≤ 0.70

0.40 < R2 ≤ 0.65
0.30 < R2 ≤ 0.60

R2 ≤ 0.4
R2 ≤ 0.3

NSE − ∞ to 1.0 Sediment
Nutrients

>0.8
>0.65

0.7 < NSE ≤ 0.80
0.5 < NSE ≤ 0.65

0.45 < NSE ≤ 0.70
0.35 < NSE ≤ 0.50

NSE ≤ 0.45
NSE ≤ 0.35

PBIAS (%) − ∞ to ∞ Sediment
Nutrients

<±10
<±15

±10 ≤ PBIAS<±15
±15 ≤ PBIAS<±20

±15 ≤ PBIAS<±20
±20 ≤ PBIAS<±30

PBIAS≥±20
PBIAS≥±30

RMSE1 0.0 to ∞ − ≤ 0.09 − 0.09 < RMSE ≤ 0.7 −

d1 0.0 to 1.0 Nutrients − d ≥ 0.75 0.75 > d ≥ 0.6 d < 0.6
RE (%) 0.0 to ∞ All data ≤ 10 10 < RE ≤ 20 20 < RE ≤ 25 RE > 25

Field-scale
R2 0.0 to 1.0 All data >0.85 0.75 < R2 ≤ 0.85 0.70 < R2 ≤ 0.75 R2 ≤ 0.70
1No PEC has been developed for RMSE and d due to lack of available data. We therefore adopted the recommendation values of Moriasi et al. (2007) for RMSE and Moriasi et al. (2015)

for d.
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et al., 2007), nitrogen (INCA-N) (Wade et al., 2002) and phosphorus
(INCA-P) (Crossman et al., 2021). Its frequent application in water
quality simulations may be attributed to its ability to use biogeochem-
ical processes to formulate the production, concentration and export of
nutrients in catchments. The HYDRUS 1D/2D model (Šimůnek et al.,
2012) was used in four research studies to simulate the concentration
and transport of nutrients in peatlands. The HYDRUS 1D/2D model
considers ecological processes like evapotranspiration and root zone
water uptake, but these mechanisms are solely reliant on hydrology, not
biogeochemical processes in the modelling.

3.2. Simulated water quality parameters

Fig. 3 shows the linkage between the water quality parameters and
the models used in the studies. Dissolved organic carbon was modelled
in eight studies on peatlands, followed by ammonium (NH4

+) (5 studies),
nitrate (NO3

–) (5 studies) and phosphorus (3 studies). At least two studies
modelled parameters like sulphur, nitrogen, copper and sediments. The
ubiquity of studies modelling the DOC is unsurprising in peat catch-
ments, particularly as its presence has been linked to the occurrence to
trihalomethanes in water treatment plants (Ferretto et al., 2021; Kumari
& Gupta, 2022). HYDRUS 1D/2D was applied to simulate most of the
water quality parameters (7 parameters), followed by INCA group of
models (6 parameters), MIKE-SHE (4 parameters), PEATBOG (3 pa-
rameters), CTRAN/W (3 parameters) and NutSpaFHy (2 parameters).

3.3. Identified water quality models

The sixteen (16) identified water quality models can be grouped into
three categories (Table 3): eco-hydrological water quality models, semi
eco-hydrological water quality models, and hydrological water quality
models, based on how they characterise the nutrient production and
how they link the nutrient production to the nutrient transport.

3.3.1. Eco-hydrological water quality models
Eight of the identified models, as presented in Table 3, are classified

as ecohydrological models, because they link ecological and hydrolog-
ical processes and consider the interactions between water resources and
ecosystems that affect nutrient production, concentration and export
(Chen et al., 2019). These models predict concentration and export of

nutrients and consider the biogeochemical processes outside and within
soil that create the nutrients (Fig. 4). Common features observed among
these models are the mathematical formulation of nutrient trans-
formation in the soil as well as the ground and surface water flow, which
are modelled using a series of first-order differential equations. Separate
independent hydrological models are needed to provide the hydrologi-
cal properties as inputs to the eco-hydrological water quality models.
For example, the INCA models rely on rainfall-runoff modelling toolkits
like PERSiST (Precipitation, Evapotranspiration, and Runoff Simulator
for Solute Transport) for hydrological input data, as employed in the
studies of de Wit et al. (2016) and Xu et al. (2020), or rely on the HBV
rainfall-runoff model as applied in the study of Oni et al. (2014).

Other models categorized under eco-hydrological water quality
models have internal sub-models to generate the required hydrological
inputs to predict the nutrient production, concentrations and export.
The PEATBOG model has an environment sub-model that generates
daily water table depth (Wu & Blodau, 2013). McGill Wetland Model
(MWMmic) depends external hydrological model for hydrological input
data to simulate DOC concentration and export bases on biogeochemical
processes within the peatland ecosystem (Shao et al., 2022). The Eco-
HAT and NutSpaFHY models have internal sub-models that generate the
hydrological input for nutrient production and export, as observed in the
studies of Wang et al. (2016a), Wang et al. (2016b) and Lauren et al.
(2021). The LPJ-GUESS model incorporates a catchment-distributed
hydrology to simulate cell-to-cell lateral water movement, which is
used in DOC routing within the catchment (Tang et al., 2018). The
MAGIC model, based on biogeochemical processes within soil, predicts
the acidification of groundwater in catchments (Cosby et al., 2001). This
model has a simple hydrology sub-module that predicts the water table
level in soil based on precipitation and evapotranspiration (Hinderer
et al., 1997).

3.3.2. Semi eco-hydrological water quality model
In the category of semi eco-hydrological water quality model, the

three models (MIKE-SHE, HYDRUS 1D/2D, and HydroGeoSphere) could
be regarded as a particular type of hydrological water quality model that
is designed in such a way that it is able to account for ecological pro-
cesses such as evapotranspiration and root water uptake by plants. These
mechanisms do not consider any biogeochemical processes as observed
in eco-hydrological water quality models. Solute concentration and

Fig. 2. Global distribution of water quality modelling studies on peatlands using water quality models.
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transport are formulated either by using advection–dispersion or con-
vection–dispersion (when both heat and solute are considered in gov-
erning equation) transport equations (Fig. 4). Compared to eco-
hydrological models, all the models in this category have internal sub-
models that calculate the hydrological properties of use as inputs
required for solute transport. The MIKE-SHE model predicts

groundwater and surface water flows using topography, vegetation, soil
properties and time-varying climate inputs, and the modelling results of
flow are used to facilitate the calculation of solute transport due to
advection–dispersion (Jutebring Sterte et al., 2021). Evapotranspiration
processes and root water uptake by plants are represented in the
groundwater flow equation in the model (MIKE SHE, 2024). Similarly,

Table 2
Summary of published studies which applied water quality models to peatlands between January 1, 2003 and December 10, 2023.

No. Model type Model
spatial
property

Model name Location1 Area Peatland type
applied/
Catchment

Rewetted
peatland

Simulated process
(variable)

Reference2

1 Conceptual
models

Semi-
distributed

NutSpaFHy Finland 31 to 1966 ha Peatland No Nutrient concentration
and transport (N & P)

Lauren et al.
(2021)3

2

Physical/
process-based
model

Semi-
distributed

INCA-N Finland 3160 km2 Peatland No Hydrology, Solute
transport, Nutrient
(DON, NH4, NO3 P &
sediment
concentration)

Rankinen
et al. (2023)

3 Semi-
distributed

INCA-C Norway 2.1 km2 Peatland
(ombrotrophic
raised bog)

No Export of DO, DOC
concentration and
stream discharge

de Wit et al.
(2016)

4 Semi-
distributed

INCA-C UK 235 km2 to
4010 km2(9
catchments)

Peatland No Hydrology, solute
transport & DOC

Xu et al.
(2020)3

5 Semi-
distributed

INCA-C Sweden 50 ha Peatland (mire) No DOC transport, DOC
concentration & runoff

Oni et al.
(2014)

6 Semi-
distributed

INCA-N Finland 3160 km2 Peatland forest No NO3-N, & NH4-N
concentration

Rankinen
et al. (2006)

7 Distributed
model

LPJ-GUESS Sweden 16 km2 Peatland No DOC transport Tang et al.
(2018)

8 Distributed
model

MODFLOW-
SURFACT

Canada 2.2 ha Peatland (Fen) No Hydrology and solute
transport (Na+)

Sutton& Price
(2022)

9 Distributed
model

MODPATH Poland 3000 ha Peatland (Fen) Yes Nutrient (Phosphate)
and solute transport

Grygoruk
et al. (2015)

10 Distributed
model

HYDRUS2D The
Netherlands

16000 m2 Peat soil No Groundwater flow,
heat transport & solute
(N, P, Cl) transport

Van Beek
et al. (2007)

11 Distributed
model

HYDRUS-CWM1 Finland 0.19 m2 Peatland (peat
base pilot
wetland)

No Hydrology, reactive
solute transport
(Sulfur, Nitrite, Nitrate
& Ammonium)

Khan et al.
(2022)4

12 Distributed
model

HYDRUS-1D Canada 900 cm2 Peatland
(sphagnum)

No Solute (Ni & Cu)
transport

McCarter
et al. (2023)4

13 Distributed
model

HYDRUS2D The
Netherlands

1160 ha Peatland
(sphagnum)

No Solute (EC) transport Dekker et al.
(2005)

14 Distributed
model

PEATBOG Canada 28 km2 Peatland
(ombrotrophic
Bog)

No NH4
+, NO3

–, DOC Wu & Blodau
(2013)

15 Distributed
model

PEATBOG Canada 28 km2 Peatland
(ombrotrophic
Bog)

No NH4
+, NO3

–, DOC Wu & Blodau
(2015)

16 Distributed
model

Mike SHE Sweden 0.5 to 69.7 km2 Peatland (mire) No Hydrology & solute
transport (Mg, K, Ca,
Na)

Jutebring
Sterte et al.
(2021)3

17 Distributed
model

Eco-HAT-P China 108, 900 km2 Peatland No Nutrient (Total
Phosphorus transport)

Wang et al.
(2016)

18 Distributed
model

GEOtop Ireland 15 km2 Catchment (Peat) No Soil erosion and
sediment transport

Zi et al.
(2016)

19 Distributed
model

HydroGeoSphere Canada 8.4 km2 Peatland No Hydrology and solute
transport (Cl)

Nagare et al.
(2022)

20 Distributed
model

CTRAN/W Norway 2.7 ha Peatland No Solute transport (Pb,
Cu, Sb)

Okkenhaug
et al. (2018)

21 Distributed
model

MMWH Sweden Lab & field
scale

Mire No DOC and solute
transport

Yurova et al.
(2008)

22 Distributed
model

MWMmic Canada 28 km2 Peatland
(ombrotrophic
Bog)

No DOC Shao et al.
(2022)

23 Lumped
model

MAGIC Canada 5.1 km2 & 9.6
km2 (2
catchments)

Peatland (Boreal
plains

No Hydrology and solute
(S & N) transport

Whitfield
et al. (2010)3

1Location refers to where the model was applied in the published study, but not the origin of the model.
2The reference refers to the article in which the model was used, but not the original reference for the model creator.
3Studies conducted on multiple catchments.
4Laboratory-based simulation (miniature peatland).
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HydroGeoSphere (Therrien & Sudicky, 2010) also applies advec-
tion–dispersion to simulate solute transport and considers the process of
evapotranspiration. HydroGeoSphere is a 3D coupled water and solute
transport model that is capable of modelling ground freeze–thaw pro-
cesses (Nagare et al., 2022). The HYDRUS 1D/2D model program is a
finite element model for predicting the movement of water, heat
transfer, and transport of multiple solutes in variably saturated media
(Van Beek et al., 2007) by using convection–dispersion equation (CDE)
for simulation of solute transport (Khan et al., 2022). The HYDRUS 1D/
2D model also includes a nutrient uptake model that accounts for the
passive nutrient uptake rate by plants roots.

3.3.3. Hydrological water quality models
The hydrological water quality models (GEOTOP, MMHW,

MODFLOW-SURFACT, MODPATH, CTRAN/W) employ either the
advection–dispersion or convection–dispersion equation for solute
concentration and transport process prediction, except for GEOTOP
which couples the continuity equation to a kinematic wave approxi-
mation of the Saint-Venant equation to formulate the sediment transport
process. Unlike semi eco-hydrological water quality models, hydrolog-
ical water quality models do not consider the effect of any

environmental processes such as evapotranspiration and root water
uptake in the groundwater flow process. With the exception of the
GEOTOP and MMHW models, the other three models in this category are
sub-models of a parent hydrological model that uses groundwater inputs
to simulate the process of solute transport. For instance, MODFLOW-
SURFACT and MODPATH are sub-modules of the MODFLOW ground-
water flow model. Contaminant transport is simulated based on
groundwater flow calculated by MODFLOW. In a similar process,
CTRAN/W simulates the transport of contaminants based on the flow
calculated by the Seep/W groundwater flow model. MODFLOW-
SURFACT is capable of simulating flow and contaminant transport in
both saturated and unsaturated zones (Panday & Huyakorn, 2008;
Sutton & Price, 2022). The MMHW model simulates the concentration
and transport of DOC using the convection–dispersion equation. The
model incorporates terms that account for the adsorption–desorption, as
well as microbial production and mineralization of DOC.

3.4. Performance of identified water quality models

3.4.1. Performance of eco-hydrological water quality models
The performances of most of the eco-hydrological water quality

Fig. 3. The computational models (bottom of the circle) and the corresponding water quality parameters (top of the circle) that they can predict. The number at the
end of an arc beside the name of a corresponding water quality parameter represents the number of studies that predicted such parameter. The number at the end of
an arc beside the name of a computational model represents the cumulative number of published studies that used the model.
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Table 3
Summary of the backgrounds and application of water quality models.

Categories Models Model background and application Common features

Eco-hydrological
water quality models

INCA-C • Runoff generation/hydrological processes by separate or
independent hydrological model (e.g., PERiST and HBV and
WSFS).

Catchment/terrestrial carbon/nutrient processes (e.g.,
decomposition of organic matter from litter fall, root breakdown,
denitrification and nitrification).

In-stream or river processes of DOC/N (e.g., advective fluxes in
the soil are modelled as the flow of water multiplied by the
concentration of DOC or DIC; advective inflows are equal to the
flow from the upstream reach multiplied by the concentration of
material in the upstream reach).

Simulation of nutrient concentration is by biogeochemical
processes in the soil such as decomposition of organic
matter from litter fall.
Models can simulate the impact of climate on
biogeochemical processes.
Mathematical formulation of nutrient transformation in the
soil, ground and surface waters are modelled as a series of
first-order differential equations.
Most of these models depend on independent models for
hydrological inputs.

INCA-N

PEATBOG This model has four sub-models:
Environment sub-model (simulates water table depth (WTD), soil
temperatures, moisture, O2 profile).
Vegetation sub-model (daily gross primary production, autotrophic
respiration, biomass and litter production).
Soil organic matter sub-model (daily heterotrophic respiration,
sequestration of C and N decomposition).
Dissolved C and N sub-model (CO2, CH4, N2O, DIN, DOC, DON
concentration and export)

MAGIC MODEL Atmosphere
Deposition of ions from the atmosphere (wet plus dry deposition)
Litter fall and other organic sources
Soil water
Biological production, removal and transformation of ions.
Internal sources and sinks of ions from weathering or precipitation
reactions.
Denitrification, nitrification
Stream water
Discharge volumes and flow routing within the catchment.

LPJ-GUESS • Catchment distributed hydrology incorporated to simulate cell to
cell lateral water movement.

DOC production (microbial decomposition).
Sorption and desorption of DOC.
DOC export within the catchment.

NutSpaFHy • Hydrological sub-model simulates WTD, root layer water content.
The development and growth stage determines the nutrient

uptake by ground vegetation and nutrient lost in litter fall.
The nutrient balance module keeps account of total nutrient

storage and nutrient concentration in the root layer.
Nutrient export module moves N and P in groundwater and in

surface runoff to the receiving water body, keeping track of N and
P storage and concentration.

EcoHAT-P • Hydrological input from another hydrological model (e.g.,
SWAT).

Nutrient cycle.
Plant growth.

MWMmic • Runoff generation/hydrological processes by separate or
independent hydrological model (e.g. CLASS3W (Canadian Land
Surface Scheme))

Vegetation phenology
Autotrophic repiration
Peat decomposition
DOC flux

Semi eco-
hydrological water
quality models

MIKE-SHE • Simulate groundwater flow using 3D Darcy flow equation.
Water quality module simulates solute transport using

advection–dispersion equation.
The model can simulate the effect of climate, vegetation and

landscape on hydrological and water quality processes.

They can predict solute transport using
advection–dispersion equation or convection–dispersion
equation.
Models can account for some ecological processes such as
evapotranspiration and root water uptake in GW flow
processes.

HYDRUS 1D/2D • Uses Richards equation to predict saturated–unsaturated water
flow.

Convection-dispersion equation for heat and solute transport.
The flow equation incorporates a “sink” term to account for

water uptake by plant roots.

HydroGeoSphere
• Modified form of Richards’ equation is used to describe three-

dimensional transient subsurface flow in a variably saturated
porous medium.

Uses advection–dispersion equation to simulate solute trans-
port.

Accounts for evapotranspiration.
GEOTOP • Kinematic wave approximation of the Saint-Venant equation is

used to simulate overland flow.
Overland flow equation is coupled to continuity equation to

simulate sediment transport.

• Solute transport simulated using advection–dispersion or
convection–dispersion equations.

Solute concentration is simulated based on changes in
groundwater level, soil dispersivity and molecular

(continued on next page)
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models were above satisfactory (Table 4). The apparent contradiction
between the ability of INCA-N to model nitrogen species in the studies of
Rankinen et al. (2006) (where the results were satisfactory) and Ran-
kinen et al. (2023) (where the results were not satisfactory), which were
conducted on the same catchment but during different periods, may
suggest there existed processes such as nitrogen uptake of aquatic plants
during the growing season which are not accounted for in the INCA-N
model. This fact was confirmed by Jarvie et al. (2002), who concluded
that this missing process in INCA model is the reason for occasional
inaccurate estimation of NO3

– as observed in their research study.

The performance of INCA-C model in simulating DOC in all three
studies (de Wit et al., 2016; Oni et al., 2014; Xu et al., 2020) was
satisfactory or above satisfactory. All the study sites were well moni-
tored and pristine peatlands. This suggests the performance of water
quality models may be affected by anthropogenic activities, especially if
these activities are not considered in the modelling processes. Proper
consideration of these processes in water quality modelling for peatlands
could improve the model performance in predicting the nutrient con-
centrations and transport processes in peatlands.

Table 3 (continued )

Categories Models Model background and application Common features

Hydrological water
quality models

diffusion.
Models depend on other models for simulated

groundwater flow

CTRAN/W • Groundwater flow is simulated by a different model, Seep/W.
CTRAN/W simulates the transport of contaminants (based on

the flow calculated by Seep/W) using advection–dispersion
equation.

MMWH Sorption
Predicts the adsorption of soluble organic matter to, and its
desorption from solid organic matter. Sorption plays a key role in
controlling the DOC concentration in pore water.
Microbial
DOC transformation by microorganism.
Hydrology
Prediction of DOC concentration in pore water using the
convection–dispersion equation.

MODFLOW-
SURFACT

• Groundwater flow is predicted by MODFLOW
MODFLOW-SURFACT simulates the transport of contaminants

(based on the flow calculated by MODFLOW) using
advection–dispersion equation.

MODPATH • Groundwater flow is predicted by MODFLOW.
MODPATH predicts the transport of contaminants (based on

the flow calculated by MODFLOW) using advection–dispersion
equation.

Fig. 4. Computational models (bottom of the circle) and the modelling methods (top of the circle) they employ for predicting the concentration and transport of
nutrients. The number at the end of an arc beside the name of a computational model indicates the number of studies that applied that computational model. The
number at the end of an arc beside the name of a modelling method indicates the number of studies that used that modelling method.
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3.4.2. Performance of semi eco-hydrological models
MIKE-SHE has been used successfully to model Mg, K, Ca and Na in a

catchment comprising a mixture of peat mire, silty sediments, sandy
sediments and till (Jutebring Sterte et al., 2021). However, unlike ni-
trogen, these elements are not affected by biogeochemical processes
within the peat soils. The model accuracy is impacted by the spatial
resolution of the computational grid, with a fine resolution improving its
accuracy (Vázquez. et al., 2002; Ali et al., 2007; Rujner et al., 2018). It is
robust and insensitive to spatial variation of soil properties when a fine
computational grid is employed (Rujner et al., 2018). The computa-
tional grid resolutions used in the studies (Ali et al., 2007; Vázquez.
et al., 2002) and the technical reference documents of MIKE SHE (2024)
range from 1200 m to 50 m in terms of the cell size, which may imply it
may be too coarse for the modelling of peatlands.

The HYDRUS 1D/2D model was used to predict the concentration of
NH4

+ and NO3
– + NO2

– in unfrozen peatland conditions (on a fields scale i.
e. < 10 ha) (Khan et al., 2022), but had poor results: R2 = 0.25 for the
prediction of NH4

+ and R2 = 0.43 for the prediction of NO3
– + NO2

–. This
could be attributed to several factors such as exclusion/underestimation
of (1) nitrification or denitrification processes (2) the pH of the peat soil,
which plays significant role in nitrogen transformation (Wang et al.,
2019), and (3) adsorption/desorption of NH4

+ by peat soil. These pro-
cesses have been confirmed to be major contributing factors for vari-
ances in nutrient concentration and fluxes (Yurova et al., 2008;Tang

et al., 2018).
The ability of HYDRUS 1D/2D in considering the complex nature of

peatland soil characteristics was demonstrated by Dekker et al. (2005),
where the computational grid resolution was 0.25 m and the model
performance in predicting the concentration of nutrient in the form of
electrical conductivity (EC) was “good” (R2 = 0.64). In this study, the
spatial heterogeneity of peatland characteristics was accounted for by
considering the hydraulic properties that vary in the three dimensions in
the peat soil. The underlying organic muck layer was distinguished from
the surface floating fen in the study (Dekker et al., 2005). This charac-
terisation of peat properties illustrates the ability of HYDRUS 1D/2D
model to consider the spatial heterogeneity of peatland.

3.4.3. Performance of hydrological water quality models
The performances of MODPATH (R2 = 0.86) (Grygoruk et al., 2015)

and MODFLOW-SURFACT (RMSE = 0.07) (Sutton & Price, 2022) were
“very good”. Although the performance of these models was considered
to be “very good”, there is concern regarding their suitability in peatland
application. For example, the MODPATH model and MODFLOW-
SURFACT model both need to get inputs from the MODFLOW model
regarding the groundwater flow. According to Baird et al. (2011), the
MODFLOW model was not designed for conditions such as those
observed in the upper layers of peat bogs where the hydraulic conduc-
tivity, K, may vary vertically and horizontally by more than two orders

Table 4
Summary of the results of performance evaluation of the water quality models.

No. Category Model Nutrient Measure Performance Reference

1

Eco-hydrological water quality model2

INCA-C DOC R2 (0.85) Very good de Wit et al. (2016)
2 INCA-C DOC R2 (0.38 – 0.69)1 Good Xu et al. (2020)
3

INCA-N

NO3
– PBIAS (3.38) Very good

Rankinen et al. (2023)
NH4

+ PBIAS (60.3) Not satisfactory
ON R2 (0.1) Not satisfactory
Susp. Sed R2 (0.07) Not satisfactory
TP PBIAS (64.5) Not satisfactory

4
INCA-N

NH4
+ NSE (0.472) Satisfactory Rankinen et al. (2006)

NO3
– NSE (0.809) Very good

5 INCA-C DOC NSE (0.49) Satisfactory Oni et al. (2014)
6 EcoHAT-P P R2 (0.661) Good Wang et al. (2016a), Wang et al. (2016b)
7 NutSpaFHy N RMSE (0.076) Very good Lauren et al. (2021)

P RMSE (0.037) Very good

8
MAGIC MODEL

NH4
+ RE (− 4.90 %) Very good

Whitfield et al. (2010)

NO3
– RE (3.94 %) Very good

SO4
2- RE (− 0.83 %) Very good

Ca RE (0.05 %) Very good
Na RE (0.15 %) Very good
K RE (0.73 %) Very good
Mg RE (0.18 %) Very good

9 PEATBOG (NH4
+, NO3

–) R2 (0.88) Very good Wu & Blodau (2015)
DOC R2 (0.77) Very good

10

Semi eco-hydrological water quality model3

MIKE SHE

Mg R2 (0.9) Very good

Jutebring Sterte et al. (2021)
K R2 (0.86) Very good
Ca R2 (0.75) Very good
Na R2 (0.79) Very good

11 HYDRUS 1D/2D (NO3
– + NO2

–) R2 (0.43) Not satisfactory Khan et al. (2022)
NH4

+ R2 (0.25) Not satisfactory
12 HYDRUS 1D/2D Cl R2 (0.74) Good Van Beek et al. (2007)
13 HYDRUS 1D/2D EC R2 (0.64) Good Dekker et al. (2005)
14

Hydrological water quality model4

5MODPATH PO4
- R2 (0.86) Very good Grygoruk et al. (2015)

15 GEOTOP Sediment R2 (0.79) Good Zi et al. (2016)
16 6MODFLOW-

SURFACT
Na RMSE (0.07) Very good Sutton & Price (2022)

17 MMHW DOC d (0.7) Good Yurova et al. (2008)
1The study was conducted on multiple catchments and the performances were measured for each catchments and R2 values obtained lies between the range indicated.

2Two studies (Tang et al., 2018; Wu & Blodau, 2013) did not report on the performances of LPJ-GUESS and PEATBOG, respectively, under in the category of eco-hydrological water
quality models.
2Shao et al. (2022) did not report on the performance of the performance of MWMmic in simulation DOC flux based on the performance indicators.
3Nagare et al. (2022) and McCarter et al. (2023) did not report on the performances of HydroGeoSphere and HYDRUS-1D, respectively, under in the category of semi eco-
hydrological water quality models.
4Okkenhaug et al. (2018) did not report on the performance of CTRAN/W model in the category of hydrological water quality models.
5,6The model performances in these studies are with regards to prediction of water table levels but not nutrient concentration. Futher discussion on this is in section 3.4.3.
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of magnitude over a short distance. This may cause MODFLOW to
become unstable. In a situation when MODFLOW was used for peatland
application, a lumped value of K was assigned to the upper layers of the
peat (Reeve et al., 1999), which may lead to inaccurate outputs of
groundwater flow rates and water table, which could subsequently
affect the modelling results of water quality.

The Mixed Mire Heat and Water (MMHW) model is specifically
designed for mire (peat) to predict the DOC concentration and transport.
Soluble organic carbon is represented in mires in two states (DOC and
sorbed potentially soluble but currently solid carbon) (Yurova et al.,
2008). This model considers how DOC is generated and consumed in a
mire ecosystem. These processes are all included in the transport
equation employed in this model. Yurova et al. (2008) applied a MMHW
model to predict the concentration and transport process of DOC in a
boreal stream draining a mire. The model performance at catchment-
scale was “good”. However, modification to the model needs to be
done if the model is intended to be used to predict the concentration of
other nutrients (such as NH4

+, NO3
–, nitrite and phosphate).

GEOTOP focuses on the mass and energy balance of the hydrological
cycle, which can be used to simulate continuum in small catchments
(Rigon et al., 2006; Zi et al., 2016). A kinematic wave approximation of
Saint-Venant equation is used to simulate the overland flow, which is
then coupled with the continuity equation to calculate the sediment
concentration. The model performance in simulating suspended sedi-
ment concentration in a catchment composed of peaty gley and podzol
soils was considered to be “good” (Zi et al., 2016). This model in its
current state is not suitable for application in the peatland nutrient
simulation, unless major modifications are made to it.

3.5. Numerical stability of the identified water quality models

The governing transport equation for predicting the solute transport
process within the saturated zone of soil takes the form (Loucks & Van
Beek, 2017):

∂C
∂t = −

[

vx
∂C
∂x+ vy

∂C
∂y + vz

∂C
∂z

]

+Dx
∂2C
∂x2 +Dy

∂2C
∂y2 +Dz

∂2C
∂z2 + s+ fR (1)

where Dx, Dy and Dz are dispersion coefficient in x, y and z directions
(m2/day); vx, vy and vz are groundwater fluxes in x, y and z directions
(m/day); C is solute concentration (mg/L) and t is time (day). S is the
source term which can represent discharge or waste-loads or additional
inflow mass. fR is the reaction term that represents physical processes,
biochemical processes and chemical reactions. Depending on the
context, this transport equation can be referred to as either an advec-
tion–dispersion equation or a convection–dispersion equation. Artificial
oscillation is one of the causes of instability in numerical solution,
especially where a sharp concentration is present in advection domi-
nated processes (Ataie-Ashtiani & Hosseini, 2005). In order to circum-
vent numerical instability problems, different numerical techniques
have been employed in the water quality models to solve the governing
equations. Moreover, depending on the water quality parameters of
interest, some models have included corresponding extra terms in the
transport equation to account for processes such as decay or production
rate of nutrients, plants and microbial absorption, desorption and
adsorption of nutrients by the soil matrix.

In MIKE SHE, the advection–dispersion transport equation is
numerically solved using the QUICKEST (Quadratic Upstream Interpo-
lation for Convection Kinematics with Estimated Streaming Terms)
method, which applies upstream differencing for the advection term and
central differencing for the dispersion term. It minimizes numerical
instability when relatively steep concentration fronts are being simu-
lated (MIKE SHE, 2024). The model also takes the source or the sink
term into account, which can reflect the influence of adding solute in a
peatland due to, for example, the inflow of water. With regards to other
processes such as biochemical and chemical reactions, the MIKE SHE

incorporates MIKE ECO lab, a general equation solver for any kinetic
reaction process. Despite the robustness and versatility of MIKE SHE,
researchers have encountered significant challenges when applying it in
a peatland context. Similar to MODFLOW, the configuration of MIKE
SHE is not well-suited for the specific conditions observed in the near-
surface layer of peatlands. Friedrich et al. (2024) used MIKE SHE to
assess rewetting scenarios on a partially restored raised bog, but could
not implement the thin acrotelm saturated zone peat layer with a higher
horizontal and vertical hydraulic conductivity. To avoid numerical
instability, they simplified the model by treating the upper layer as one
larger average layer. This is one of the shortcomings of the MIKE SHE in
peatland applications, which may result in inaccurate hydrological
input data for solute transport modelling.

In the HYDRUS 1D/2D model, the solute transport equation con-
siders the convective–dispersive transport in the liquid phase, as well as
the diffusion process in the gas phase (Šimůnek et al., 2012). The gov-
erning transport equation is numerically solved using the Galerkin finite
element method (Šimůnek et al., 2012). Like MIKE SHE, the HYDRUS
1D/2D model also uses the upstream weighing formulation to prevent
numerical oscillations in situations where convection transport is
dominant. Adsorption-desorption processes are considered in the
mathematical formulation of the transport equation. First order decay
reactions are included in the solute transport equation to account for
nitrification/denitrification processes. Although not originally designed
for peatlands, HYDRUS 1D/2D has been adapted for modelling solute
transport in such ecosystems, as demonstrated by Khan et al. (2022) and
Dekker et al. (2005). While Dekker et al. (2005) did not report any
substantial challenges with HYDRUS 1D/2D, Khan et al. (2022) assessed
the model’s performance under varying climatic conditions (frost and
without frost) and noted discrepancies between simulated and observed
flow processes. These discrepancies were attributed to the inherent
heterogeneity and unique layering structure of peatlands. This high-
lights the limitations of HYDRUS 1D/2D in accurately representing the
CAS characteristic of peatland environments.

The four models, MODPATH, MODFLOW-SURFACT, CTRAN/W and
HydroGeoSphere, employ the advection–dispersion solute transport
equation while employing the appropriate term in the transport equa-
tion to formulate the decay, adsorption and desorption of solutes. The
major difference between these four water quality models is the how the
solute transport equation is numerically solved and the stability of the
numerical scheme. Three of the models (MODPATH, MODFLOW-
SURFACT and HydroGeoSphere) apply a finite-difference method to
discretise the solute transport equation, while CTRAN/W employs a
finite element method. With regards to stability, finite difference/
element method has a problem of truncation error. To improve the
stability of model, the MODFLOW-SURFACT and HydroGeoSphere
models discretized the advection term using mass conservative second-
order total variation diminishing (TVD) scheme which applies the up-
stream weighing formulation to minimize the numerical dispersion
(Panday & Huyakorn, 2008; Therrien & Sudicky, 2010). The TVD
method applied to the advective term ensures a physically correct so-
lution without oscillation even for totally advective dominant transport
process (Panday & Huyakorn, 2008). However, HydroGeoSphere was
not purposely designed for peatland applications and therefore has some
limitations. For example, due to the inability of HydroGeoSphere to
incorporate a heterogeneous peat structure, Autio et al. (2020) modelled
the peat as a simple homogeneous layer of uniform thickness. Spatial
variability of peat properties, which has been consistently observed in
many studies (Li et al., 2019; Baird et al., 2008; Lewis et al., 2012), may
be neglected as a result of this simplification. Consequently, this
approach may ignore the impact of spatial variability on hydrological
and water quality modelling in peatlands.

The CTRAN/W (GEO-SLOPE, 2012) and MODPATH (Hanson et al.,
2013) models employ a different approach to deal with numerical
instability by having an option to simulate the purely advective solute
transport process using a particle tracking method. In this method, the
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effect of dispersion, adsorption and decay is not considered. Solute
dilution, caused by dispersion, is a very significant component of solute
transport; ignoring it can lead to inaccurate results, especially if applied
in peatlands (GEO-SLOPE, 2012).

The MMHW model also uses the convection–dispersion solute
transport equation to predict the concentration of DOC in mire ecosys-
tems. MMHW applies a finite difference method to discretized (vertical
discretisation) the model domain and assumes there is no lateral import
of DOC from the surrounding areas into the mire (Yurova et al., 2008).
This assumption can be a challenge as water flow in shallow aquifer such
as peatlands underlain by impermeable layers are predominantly hori-
zontal (Baird et al., 2011). The model includes additional terms in the
transport equation to formulate the rate of desorption/adsorption, the
microbial production rate of DOC and first order microbial DOC
mineralization constant. The governing equations of DOC and SPSOC
(sorbed, potentially soluble organic carbon) are numerically solved
using the CVODE (a program package written in C programming lan-
guage for solving ODE) program package (Yurova et al., 2008). CVODE
solver includes an algorithm called STALD (STAbility Limit Detection)
which in combination with the CVODE solver improves the model sta-
bility in advection-dominated advection–dispersion problems
(Hindmarsh et al., 2005).

4. Key processes for water quality modelling in peatlands

Hydrological inputs (i.e. water table level/groundwater movement
within peat soil) are critical for water quality modelling in peatlands
(Table 3), particularly as many processes such as plant community
succession, plant/litter productivity, peat decay and accumulation
depend on water table level, which regulates the soil water chemistry
(Whitfield et al., 2009). Sorption and desorption processes control the
nutrient fluxes in peatlands and must also be considered in the formu-
lation of mathematical equations for water quality models. Sorption and
desorption of nutrients by the soil matrix control the concentration and
transport of DOC (Tang et al., 2018). Indeed, the store of SPSOC in any
given year may affect the DOC concentrations and fluxes in the subse-
quent year (Yurova et al., 2008). Finally, decay/production rate and
nutrient mineralization are critical processes that must be considered in
water quality models. These processes control microbial decomposition
of nutrients, nitrification/denitrification and DOC mineralization within
peat soils. Their exclusion or underestimation could lead to inaccurate
prediction of nutrient concentration and transport (Khan et al., 2022a;
Rankinen et al., 2006).

4.1. Development of a peatland-specific water quality model

Water quality models need to take cognisance of the spatial hetero-
geneity of peatlands and consider them as complex adaptive systems
(Belyea& Baird, 2006). Accordingly, any newly developed water quality
model for peatlands should (1) be 2-D process-based and fully distrib-
uted (Baird et al., 2011) (2) include a peatland-specific hydrological
model (either as an inbuilt sub-module or coupled to an existing hy-
drological model) that generates input data or is capable of considering
the spatial variability of peat characteristics (Macrae et al., 2013;
Molenat et al., 2008; Hefting et al., 2004) (3) include a hydrological
model for the prediction of the impact of restoration methods (e.g. drain
blocking, bunds) on raising the water table level (which affects nutrient
concentrations and transport) (Koskinen et al., 2017; Lundin et al.,
2017) (4) contain mathematical formulations for solute transport and
concentration fluxes based on the advection/convection–dispersion
equation, and (Khan et al., 2022) (5) consider processes capable of
altering the concentration and transport of DOC and nitrogen-based
nutrients (Tang et al., 2018; Yurova et al., 2008).

4.2. Avenues for future research

Advances in artificial intelligence (AI) has made it possible to inte-
grate machine learning (ML) into numerical modelling systems to
enhance model outputs (Pandya et al., 2024). Many ML models are
nonlinear and function as black boxes (Sitterson et al., 2018), providing
limited insight into their predictions. However, combining models, such
as hydrological models with water quality models, and incorporating ML
for optimization and calibration, may be beneficial in peatlands. An
example is the use of Support Vector Machine (SVM) for groundwater
quality prediction, which maximizes forecast accuracy and detects
overfitting (Pandya et al., 2024). Nordin et al. (2021) reviewed AI-based
groundwater quality forecasting, and found SVM, ANN, LWPR (locally
weighted projection regression) and RVM (relevance vector machines)
to be more accurate and faster compared to a physically-based modular
3-dimensional transport model. Hybrid ML-numerical models hold
promise for future peatland water quality research.

Tracer-aided water quality modelling may also be useful when
identifying the sources or path of pollutants in peatlands and investi-
gating controls of nutrients in peatlands. Wu et al. (2022) successfully
used a tracer-aided model to differentiate the primary influences of
hydrological and biogeochemical controls on water quality in riparian
peatland. Remote sensing to estimate water quality parameters is a very
promising avenue to explore in peatlands. Cherukuru et al. (2021) used
an optical remote sensing model to estimate suspended sediments and
DOC in coastal waters influenced by a peatland-draining river. This
concept could be explored in peatland settings.

5. Conclusions

The selection of an appropriate computational model to predict the
impacts of management of peatlands is important. This paper identified
16 different water quality models (15 processed-based and 1 conceptual)
and reviewed their efficacy in 23 reported studies. INCA and HYDRUS
1D/2D are the most widely modelled water quality models. Dissolved
organic carbon and nitrogen-based nutrients are the most widely
modelled water quality parameters. Models such as MIKE SHE, MOD-
PATH, MODFLOW-SURFACT and HydroGeosphere are unable to
implement the complex characteristics of peat soil observed at the near
surface, which has compelled researchers to resort to simplifications of
peatland structure. Similarly, HYDRUS 1D/2D has challenges in
considering the inherent heterogeneity of peatlands. Although the
MMHW model was designed for peat mire ecosystems, it does not
consider horizontal export of nutrients. To date, it has only been used to
predict the concentration and transport of DOC.
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