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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Climate change is likely to impact
pesticide contamination of water
supplies.

• A probabilistic model to assess future
pesticide human health risks was
developed.

• It was shown that climate change in-
creases pesticide exposure and risks in
Ireland.

• Regional disparities in results emphasise
a need for localised climate strategies.

• Proposed approach may be used for
public health and climate adaptation
strategies.

A R T I C L E I N F O

Editor: Ashantha Goonetilleke

Keywords:
Climate change
Pesticides
Health risk assessment
Surface water
Probabilistic modelling

A B S T R A C T

Climate change can influence pesticide contamination and resulting human health risks due by altering weather
conditions that drive pesticide fate and transport. However limited research has examined these effects, leaving
regulatory frameworks and adaptation strategies unable to address future pesticide risks. This study develops a
novel probabilistic model to quantify climate change impacts on pesticide-related human health risks under two
different climate scenarios, using study locations in the north-east and south-west of Ireland. Results indicate that
pesticide concentrations in drinking water are projected to exceed legal limits more frequently, and by greater
amounts, under all climate scenarios, with associated health risks increasing by an average of 18 % under RCP
4.5 (2050) and 38 % under RCP8.5 (2100). The model results also indicate significant regional variation in
health risk, with risk 48 % higher in the south-west than the north-east under baseline conditions. Climate
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change effects intensify these regional variances with risk up to 70 % higher under RCP4.5 (2050), and 85 %
higher under RCP8.5 (2100). Despite these increases, overall pesticide human health risks are likely to remain
low in Ireland under future climates. This study presents a probabilistic framework that may be applied inter-
nationally to quantify the impact of climate change on human health risk at a local-scale and may be adapted for
different site conditions and climate projections to suit users’ needs. This approach can inform future pesticide
management programmes by identifying vulnerable areas and key pesticides under changing climate conditions,
emphasizing the importance of incorporating climate change into pesticide risk mitigation and public health
strategies.

1. Introduction

Climate change has emerged as one of the most pressing challenges
of the 21st century and has already resulted in extensive changes to the
atmosphere, natural resources, and aquatic and terrestrial ecosystems
(IPCC, 2022). There is significant concern regarding the impacts that
climate change-related flooding and droughts may have on the avail-
ability and quality of drinking water resources (Welch et al., 2021;
Gascuel-Odoux et al., 2023). In addition to these hydrologic effects,
climate change also has great potential to affect drinking water quality
due to increased agricultural pollutant loading, including pesticide
contamination (Kaka et al., 2021). Shifts in precipitation patterns due to
climate change are likely to affect the rates of pesticide runoff to
waterbodies, as it was found that rainfall is a key driver of pesticide loss
(de Souza et al., 2020). Therefore, climate change has the potential to
significantly affect human exposure to pesticides via drinking water
supplies due to these changes in contamination rates (Zhu et al., 2021).
The extensive use of pesticides in modern agriculture has already
resulted in the accumulation of contaminants in soil and water bodies (Li
and Niu, 2021; Wolfram et al., 2021; McGinley et al., 2023), posing
significant threats to human health and the environment (Kalyabina
et al., 2021; Wang et al., 2022). The intensification of food production
required to meet a 60 % increase in food demands by 2050 (UNEP,
2022), as well as the projected changes to climate variables (O’Brien
et al., 2024), have the potential to exacerbate the likelihood of exposure
to these chemicals in drinking water supplies and, in turn, pose greater
health risks (Delcour et al., 2015; Saha et al., 2019). Therefore, the
implementation of pesticide risk assessment and management strategies
are key factors in reducing the future impact of climate change on water
quality (Schäfer et al., 2019).

Pesticide risk assessment and management often relies on simulation
models to assess pesticide transport and resulting environmental and
human (Welch et al., 2021) health risks under current conditions, due to
their effectiveness in representing the relationships between pesticide
properties and site conditions (Li and Niu, 2021). Several studies have
applied deterministic modelling approaches, models that produce a
single outcome based on the assumption of fixed relationships between
input variables and excluding any randomness, to predict pesticide
concentrations for research and regulation under current climatic con-
ditions (Luo et al., 2011; Pullan et al., 2016; Wang et al., 2019). Prob-
abilistic modelling approaches, models that incorporate variability and
uncertainty through the use of probability distributions to represent
likelihood of different variable combinations and resulting outcomes,
are becoming more widely used in this field to account for the variability
associated with pesticide behaviour, as well as the uncertainty associ-
ated with modelling soil, weather and pesticide data (Cantoni et al.,
2021; Troldborg et al., 2022). These deterministic and probabilistic
simulation models are combined with pesticide health risk data in order
to quantify the risk arising from pesticide usage under current climatic
conditions (Focks et al., 2014). However, it has been suggested that
environment and human health risks arising from pesticide exposure are
likely to change in the future due to climate change (Nadal et al., 2015;
Tudi et al., 2021). Many studies have identified parameters which may
change under future climates and therefore may influence future pesti-
cide risks i.e. changes to rainfall frequency and intensity, increasing

temperatures and changes to growing seasons (Noyes et al., 2009; Del-
cour et al., 2015; Biswas et al., 2018). Although there is considerable
research identifying key climate change parameters, there is still limited
work modifying fate and risk models to quantify the influence of these
effects on pesticide risk to the environment and human health arising
from pesticide use (Hader et al., 2022; Bolan et al., 2024). To date, the
majority of pesticide fate and risk models only provide estimation of risk
under current conditions, and do not provide insight into how rates of
pesticide exposure and health risks may decrease/increase with changes
in climatic conditions (Sperotto et al., 2017; Oldenkamp et al., 2024).
These approaches cannot provide decision-makers and stakeholders
with data needed for future-proofing pesticide regulations and water
treatment infrastructure. There is thus considerable need for the analysis
of climate change impacts on future pesticide-related health risk to
provide invaluable risk-based decision support (Stewart and Deng,
2015).

Although it is still a limited area of research, some studies have
begun to integrate climate projections and pesticide fate/risk models
(Moe et al., 2024). Initially, work on applying probabilistic approaches
to quantify climate change impacts on pesticide loss was limited to
assessing changes in future environmental pesticide concentrations in
groundwaters (Steffens et al., 2015) and surface water (Gagnon et al.,
2016). However, these studies can only be used to assess pesticide
concentrations and provide no information about future pesticide risks
to human health. There is a pressing need for such research as it provides
crucial risk-based information for future-proofing pesticide remediation
measures and public health strategies, decisions for water infrastructure
investment, and informing adaptive practices to ensure pesticide regu-
lation remains effective in the future (Anik et al., 2023; Bolan et al.,
2024). More recently, this work has been advanced by researchers to
analyse potential changes to pesticide environmental risks arising from
future climate conditions using Bayesian Networks (Mentzel et al., 2022;
Martínez-Megías et al., 2023; Oldenkamp et al., 2024). Both Mentzel
et al. (2022) and Oldenkamp et al. (2024) adapted a pesticide exposure
model (World Integrated System for Pesticide Exposure, WISPE) using
future climate projections for Norway to assess the influence climate
change will have on pesticide risks aquatic organisms. Similarly, Mar-
tínez-Megías et al. (2023) applied Bayesian networks to another pesti-
cide exposure model (RICEWQ) to probabilistically assess
environmental risks to aquatic invertebrates and non-target plants
arising from pesticide use in rice fields, and how these risks may respond
to a changing climate in a Mediterranean context. Although these
studies have contributed significantly to the literature by advancing the
work in the combination of global climate models with pesticide fate and
environmental risk models, these studies do not consider the effects on
pesticide-related human health effects. Furthermore, they have been
limited due to the use of ensembles with a small number of climate
models, low-resolution climate models or the use of projections that
have not been bias-corrected. This can introduce model variability and
errors into the projections and may not fully capture the spatial vari-
ability of climate change which can impact reliability of projections
(Navarro-Racines et al., 2020; Kotamarthi et al., 2021; Moe et al., 2022).
Despite the work carried out in these studies, research on adapting
pesticide environmental risk assessments for climate change effects is
still an emerging area of research (Martínez-Megías et al., 2023), and
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even less work has been carried out in adapting human risk assessments
for climate change, with no published work to-date quantifying the
potential climate change impacts on pesticide-related human health
risks (Gatto et al., 2016; Langreiter et al., 2023). This current study seeks
to address the pressing need for pesticide-related human health risk
information for future climatic conditions, utilising state-of-the-art
climate projections from high-resolution, bias-corrected climate models.

The aim of this study was to develop a novel model framework,
incorporating state-of-the-art projections into a probabilistic pesticide
health risk model, to predict how future climatic conditions may influ-
ence pesticide concentrations in drinking water due to changes in
pesticide runoff and assess resulting human health risk for future cli-
matic conditions. This study presents a first step towards quantifying
climate change impacts on future risks posed to human health from
pesticide exposure using probabilistic modelling. This was achieved by
(1) producing probability distributions for climate inputs using multi-
model, bias-corrected and detrended projections based on downscaled
regional climate models, (2) adapting probabilistic pesticide risk model
using these developed climate parameters to quantify changes to
pesticide-related human health risks in future climates, (3) illustrating
the application of this model to predict future pesticide concentrations
and resulting risk under future climatic conditions for Ireland and (4)
assessing the influence spatial variability in climate change may have on
regional discrepancy in pesticide health risks. This study is one of first to
assess the interaction between climate change and pesticide transport in
terms of human health risks, and the approach developed may be used to
inform pesticide-specific risk management schemes and climate adap-
tation strategies for the future.

2. Methodology

2.1. Climate change projections

Previous work found that precipitation and growing season length
are key climate parameters in pesticide runoff modelling (Harmon
O’Driscoll et al., 2024). As growing season length can be determined
using a thermal growing season metric dictated by daily temperature
(Dunn et al., 2020), temperature is also an important variable to
consider. As a result, precipitation, temperature, and growing season
length were selected as the primary climate variables for this analysis. In
this study standardised, high-resolution climate projections of daily
precipitation and temperature data in Ireland were obtained from the
TRANSLATE project (O’Brien and Nolan, 2023; O’Brien et al., 2024),
however the methodology developed in Section 2.2 may be applied to
projections from any regional or global climate model. The TRANSLATE
project has developed bias-corrected, detrended and downscaled pro-
jections based on post-processing the output of two multi-model en-
sembles (with overall totals of 27–35 ensemble members, depending on
the different future forcing scenarios considered) from regional climate
models (COSMO-CLM and Weather Research and Forecasting (WRF)
(Flanagan and Nolan, 2020; Nolan and Flanagan, 2020). Projections
were obtained for 30-year time periods using different emission sce-
narios for the quantitative assessment of climate change impacts within
Ireland. Location-specific climate projections for two Irish sites in the
north-east (NE) (Dunleer, Co. Louth; 53◦ 50′ 09″ N, 6◦ 25′ 04″ W), and
south-west (SW) (Causeway, Co. Kerry; 52◦ 24′48″N, 9◦ 43′50″W), were
used in pesticide risk modelling to represent the regional variability of
climate change effects (Fig. S1 in the Supplementary Information). Both
the NE site and the SW site have relatively similar site conditions, i.e.
land-use and soil types, as they are predominately grassland (pasture,
rough grazing, silage, hay or any combination) (EEA, 2021) with similar
soil types (both sites classified as hydrologic group C soils: loamy soils
with moderately high runoff potential (USDA, 2009; EPA, 2021). These
site conditions are representative of the average Irish agricultural sce-
nario, where 90 % of agricultural land is grassland, and group C is the
dominant soil group (Cawkwell et al., 2017; EPA, 2021). Five discrete

warming scenarios were considered in the analysis: (1) baseline existing
conditions, based on 1976–2005 climatic data, (2) the IPCC RCP4.5,
intermediate emissions scenario, for mid-century (2050), (3) the IPCC
RCP8.5, high emissions scenario, for mid-century (2050), (4) RCP4.5 for
end-of-century (2100), and (5) RCP8.5 for end-of-century (2100). The
two timeframes (mid-century and end-of-century) are based on 30 years
of climate projections over the period of 2041–2070 and 2071–2100,
respectively. The changes to the average precipitation and temperature
based on these projections are given in Table 1, where the values
represent the change under each climate scenario relative to the baseline
conditions.

Climate projections for Ireland were integrated into the probabilistic
risk model framework (Section 2.2) to illustrate how the proposed
framework can be applied, using data from climate models for specific
regions. However, other countries across the North Atlantic region
(Northern Europe, Eastern Canada and North-Eastern USA) are likely to
experience relatively similar climate effects to Ireland. IPCC projections
for the region suggest that precipitation will experience a median in-
crease of 12.2% and temperature by amedian increase of 2.1 ◦C by 2100
relative to 1986–2005 levels (Gutiérrez et al., 2021). Precipitation and
temperature in Ireland are projected to increase by 10.8–12.2 % and
2.2–2.4 ◦C, respectively (Table 1), which is in line with increases across
the North Atlantic region. Therefore, while the projections used in this
study are specific to two locations in Ireland, the results in this study
may be indicative of changes to future pesticide risks across the region
and may help inform the need for pesticide risk assessment under future
climates.

2.2. Pesticide risk assessment methodology

This work builds on the authors’ previous work (Harmon O’Driscoll
et al., 2024), through re-development of a user-friendly, probabilistic
pesticide risk model to consider the influence of climate change using
state-of-the-art climate projections. These modifications enabled the
quantification of climate change impacts on future pesticide runoff to
surface waters and resulting human health risks arising from changes to
pesticide exposure via drinking water. In brief, the authors’ previous
work developed a probabilistic pesticide risk assessment by building on
the existing Simplified Formula for Indirect Loading caused by runoff
(SFIL) (OECD, 2000; Berenzen et al., 2005). This allowed users to assess
the influence of land use, soil and climate conditions, site data, and
pesticide properties on exposure concentrations of pesticides in surface
waters. The authors modified this base model by (1) incorporating a
more detailed approach to assess the rainfall-runoff relationship using
the Soil Conservation Service (SCS) curve number method (USDA,
2004b), (2) including additional in-stream processes that may affect
pesticide concentration, (3) combining this pesticide transport model
with a widely-used pesticide health risk assessment approach (FAO and
WHO, 1997; EFSA, 2019), and (4) utilising a Monte Carlo simulation

Table 1
Changes to parameters under future scenarios relative to baseline (where μ =

mean; σ = standard deviation).

Scenario Daily precipitation Daily mean temperature

Change μ (%) Change σ (%) Change μ (%) Change σ (%)

Dunleer (North-East Site)
RCP4.5 (2050) + 3.1 + 7.1 + 10.2 + 3.9
RCP8.5 (2050) + 5.4 + 10.4 + 14.7 + 4.8
RCP4.5 (2100) + 6.8 + 11.5 + 14.4 + 3.9
RCP8.5 (2100) + 12.2 + 19.9 + 26.9 + 6.6

Causeway (South-West Site)
RCP4.5 (2050) + 2.0 + 13.4 + 8.7 - 1.0
RCP8.5 (2050) + 5.1 + 19.6 + 12.4 - 0.1
RCP4.5 (2100) + 5.8 + 19.7 + 12.6 - 0.7
RCP8.5 (2100) + 10.8 + 21.7 + 22.9 + 1.2
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approach for probabilistic assessment. The SFIL base-model has been
widely used to assess pesticide runoff concentrations and has been found
to perform relatively well compared to monitored pesticide concentra-
tions in several regions globally (Schriever and Liess, 2007; Isaltino
et al., 2015; Utami et al., 2020). This modelling approach could po-
tential also be applied to predict runoff of other organic chemical pol-
lutants to suit users’ needs, as it has been suggested that the processes of
chemical transport and degradation is common to the majority of
organic chemicals (Di Guardo et al., 2018). However, this approach may
not account for key parameters or processes specific to different pol-
lutants, for example conventional fate models are not suitable for PFAs
or polar substances such as PCBs due to data gaps or non-standard fate
processes (Schlüter et al., 2022). Therefore, these factors need to be
considered should this approach be applied to other chemicals beyond
pesticides.

For the work detailed in the current paper, the model was adapted to
facilitate incorporation of climate projections from a range of down-
scaled regional climate models to account for the direct effects of climate
change on pesticide transport and resulting health risks, thereby illus-
trating how the model may be adapted for future climates to inform
climate adaption strategies. Fig. 1 illustrates how the exposure compo-
nent of the health risk assessment implemented in the current study was
modified for future climate scenarios. The following discussion will
focus on the elements of the model that will be adjusted to allow for the
incorporation of climate change projections. For detailed discussion of
the original model development see the authors’ previous work
(Harmon O’Driscoll et al., 2024). This framework was applied to an Irish
case study (Section 2.4), using standardised climate projections for
Ireland as well as national datasets, to illustrate how this framework can
be applied to assess the potential changes in pesticide concentrations in
drinking water and resulting human health risks under different time
horizons and climate scenarios. As this is an Irish case study, the influ-
ence of water treatment on pesticide concentrations were not consid-
ered, as effective pesticide removal processes are not currently
implemented in water treatment plants within the Republic of Ireland
(Éireann, 2021). However, the model was developed to be easily
adapted to suit users’ need and therefore reduction factors to account for
pesticide removal processes may easily be incorporated into the model
should this be appropriate for a given country.

Daily precipitation is the primary climatic parameter in the study’s
exposure model as it influences both the runoff volume (Eq. (1)) and the
percentage of applied pesticide available for runoff. Given that climate
change is likely to have an impact on precipitation intensity and fre-
quency in Ireland (Nolan and Flanagan, 2020), there is significant po-
tential for climate change to alter the level of risk associated with
pesticide exposure.

First, daily runoff volume, Q (mm.day− 1), was calculated using
model modifications adapted from the USDA’s SCS Curve Number
approach (USDA, 2004b):

Q =
(R − 0.2S)2

(R+ 0.8S)
; for R ≥ 0.2S (1)

Q = 0 ; for R< 0.2Swhere R is daily precipitation (mm.day− 1), and S
is the maximum potential soil retention (mm). Based on Eq. (1), runoff
will only occur when a precipitation event exceeds the threshold value
of 20 % of the maximum potential soil retention. The threshold value
varies based on the interaction between a site’s land-use, soil type and
cover conditions, as detailed in USDA (2004a). This highlights the
importance of changes in precipitation patterns under future climates, as
heavier precipitation periods are likely to result in more exceedances of
this threshold and hence more frequent runoff events. In order to ac-
count for the changes to climate variables in the SFIL model, a number of
climate-adjusted probability distributions were developed as follows
(Fig. 1):

Climate change adjustment factors.

The gamma distribution was identified as the most appropriate for
daily precipitation data based on distribution fitting to historical data
and approaches in literature (Chandler and Wheater, 2002; Mockler
et al., 2016; Ye et al., 2018). Daily precipitation under baseline condi-
tions (R) was modelled as follows:

f(R) =

⎛

⎜
⎝Rα− 1exp−

R
β

⎞

⎟
⎠

βαΓ(α) ; for 0 < R < ∞ (2)

where α and β are the shape and scale parameters of the gamma distri-
bution, and the gamma function Γ(α) is defined as:

Γ(α) =
∫ ∞

0
Rα− 1exp− R dR (3)

In order to adapt Eq. (1) to account for the impacts of climate change
on precipitation and resulting runoff, the shape and scale parameters (α
and β) of Eq. (2) were modified to fit projected precipitation data (αcs
and βcs, whereby cs is the different climate scenarios) as follows:

αcs =
μ2
σ2 x

(

1+ δmean(t)
100

)2

(

1+ δvariance(t)
100

)2 (4)

βcs =
σ2
μ x

(

1+ δvariance(t)
100

)2

1+ δmean(t)
(5)

where μ and σ are the mean and variance of baseline precipitation data,
and δmean(t) and δvariance(t) are timeframe-dependent percentage
changes to the mean and variance value for each climate scenario
(Table 1). Daily precipitation under future climate scenarios (Rcs) was
then modelled based on Eq. (2) but using these adapted shape and scale
parameters.

Eqs. (2)–(5) demonstrate how daily precipitation values for future
climates were developed for the pesticide transport model. However, the
resulting precipitation dataset is for the whole year, including months
outside the growing season where there is little or no pesticide appli-
cation. Previous work by the authors identified that predicted environ-
mental concentration, and resulting health risk, decreased by up to 25 %
when modelling for growing season period only, due to decreased levels
of precipitation in the Irish growing season compared to annual condi-
tions (Harmon O’Driscoll et al., 2024). As a result, pesticide risk can be
overstated when using annual climatic conditions. Additionally, pesti-
cide application timings are largely dependent on the timings of crop
planting and growing during the growing season (Bareille et al., 2024).
Therefore, this study only considered growing season conditions in the
modelling of pesticide risk by limiting climate projections to this period
only, thereby better representing realistic climatic conditions during
pesticide application. The thermal growing season was used to assess the
period of pesticide application, extrapolating growing season conditions
from daily temperature projections as shown in Fig. 1. The thermal
growing season (TGS, in days) is defined as the length of time between
the first six successive days with an average temperature greater than
five degrees, and the first six successive days with an average temper-
ature less than five degrees (Dunn et al., 2020; Nolan and Flanagan,
2020), or as follows:

TGS = n − (i2 − i1)

where i1 = min[i|(Ti > 5) and (Ti+1 > 5)and…(Ti+5 > 5) ]

and i2 = min[i|i > i1 +5 and (Ti < 5) and (Ti+1 < 5) and…(Ti+5 < 5) ]
(6)
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Fig. 1. Health risk assessment framework adapted for climate change.
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where n is the number of days in the year, i1 is the first day whereby the
following five consecutive days have a mean temperature>5 ◦C, i2 is the
first day whereby the next five consecutive days have a mean temper-
ature <5 ◦C, and Ti is the mean air temperatures (◦C) on day i. Based on
best-fit analysis of the observed daily mean temperature for baseline
conditions, a normal distribution was used to obtain daily mean
temperature:

f(T) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ exp−
(T− μ)2
2σ2 (7)

where μ and σ are the mean and standard deviation of the observed daily
temperature data for baseline conditions. A modification was made to
Eq. (7) to allow for climate-related effects to be incorporated into
modelling daily temperature values for future scenarios (Tcs) as follows:

f(Tcs) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2π
(

σ
(

(1+δvariance(t) )
100

))2
√ exp

−

(

Tcs −

(

μ

(
1+δmean(t)

100

)))2

2

(

σ

(
(1+δvariance(t) )

100

) )2

(8)

where δmean(t) and δvariance(t) are timeframe-dependent percentage
changes to the mean and variance value for each climate scenario
(Table 1). For each climate scenario, the growing season length is
calculated using Eq. (6); for future daily temperatures as obtained from
Eq. (8), and distributions fitted to the resulting growing season length
data. Additionally, distributions for the start and end day of growing
seasons were extrapolated from growing season lengths, and these
conditions were then used to extract daily precipitation projections for
growing season conditions only from projected precipitation for the
whole year for each of the five climate scenarios as shown in Fig. 1. The
growing season conditions and resulting daily precipitation during the
growing season for each simulated climate scenario are discussed in
Section 3.1. The probability distributions for the climate change
adjusted climate variables are then used in to calculate future pesticide
concentrations and resulting human health risks (Eqs. (9)–(16)) for
different time horizons and climates scenarios with findings for an Irish
context presented in Section 3.2 and 3.3.

Climate-modified pesticide health risk model
Eq. (1) was then modified for runoff volume under future climates

(Qcs) to account for the adaptations applied to precipitation data as
follows:

Qcs =
(Rcs − 0.2S)2
(Rcs+0.8S) ; for Rcs ≥ 0.2S

Qcs = 0; for Rcs < 0.2S (9)

Daily precipitation and daily runoff volume for the climate change
scenario, as calculated in Eqs. (2) and (9), were then used to estimate the
percentage of applied pesticide dose lost to runoff (L%), in combination
with pesticide physiochemical properties and several site conditions, as
follows:

L% =
Qcs
Rcs

x
exp

− tln2
DT50,s x 100
1+ Kd

xf1xf2xf3 (10)

where DT50,s and Kd are input parameters based on pesticide properties
(see Table S1), and f1, f2, and f3 are correction factors to account for site
conditions (Beinat and Van den Berg, 1996; OECD, 2000; FOCUS, 2002;
Berenzen et al., 2005).

It has been found that variations in temperature can affect the rate of
pesticide degradation in the environment (Gentil et al., 2020; Petrova
et al., 2021; Campan et al., 2023). Therefore, an adjustment factor can
be used to adapt pesticide half-lives for future climate conditions to
account for how a warming climate may lead to a change in the rate of

degradation. In this framework, users may apply a standard Arrhenius
equation (FOCUS, 2011) to develop this adjusted half-life data as
follows:

DT50,CS = DT50 x

⎛

⎜
⎝e

Ea
R x

(
1
T−

1
Tcs

)⎞

⎟
⎠ (11)

where DT50,C is the new pesticide half-life resulting from temperature
projections for future scenarios, DT50 is the original pesticide half-life
(days), Ea is the activation energy of the pesticide (kJ/mol K), R is the
universal gas constant (8.31447 J/mol K). The reference temperature
(T) is taken to be 20 ◦C or 293.2 K, as the half-life data was obtained
from EFSA reports, where pesticide half-life is recorded at 20 ◦C (EFSA,
2021). Tcs is the projected temperature accounting for climate change
which was obtained using Eqs. (7) and (8) and converted to Kelvin. This
equation however may not be suitable in representing the increased rate
in degradation in regions with cool climates, such as the mild temperate
oceanic climate in Ireland, as daily temperatures even under future
climates may not exceed the 20 ◦C reference temperature. In fact, the
authors found that the increased daily temperatures lead to no, or very
minor changes in predicted pesticide concentrations in Ireland due to
the relatively low daily temperatures under all climate scenarios.
Therefore, this was excluded from the analysis in Section 3. However,
this factor may be important for warmer continental, tropical and
Mediterranean climates with high daily temperatures, therefore users
are advised to consider whether this factor should be considered for
their own needs.

Pc, the pesticide concentration at the edge of field (μg.l− 1), was
calculated as per Berenzen et al. (2005):

Pc = L%xPax
1

Qstreamx Δt
(12)

whereby Pa is the application dose of the pesticide (μg), Qstream is the
flowrate of the waterbody (l.s− 1) andΔt is the length of the precipitation
event (s), as defined by APVMA (2020).

The predicted pesticide concentration in drinking water was assessed
as the product of the edge-of-field concentration (Pc) and several in-
stream reduction factors (ρss, ρsed, ρdeg, see Supplementary Informa-
tion) (ECB, 2003; EPA NZ, 2020; Harmon O’Driscoll et al., 2024) that
may reduce the concentration of pesticides over a retention period of
five days (FOCUS, 2015):

PEC = Pc x ρss x ρsed x ρdeg (13)

The resulting distribution of pesticide concentrations from Eq. (13)
can be used to form the basis of a range of pesticide risk assessments.
However, for the purpose of this study, modelled concentrations were
used to calculate human exposure rate to a pesticide according to FAO
and WHO (1997) guidelines:

EDI =
PEC x WC
BW x 1000

(14)

where EDI is the estimated daily intake (mg.kg− 1.day− 1), WC is the rate
of water consumption (l.day− 1), BW is bodyweight (kg), and 1000 is a
conversion factor. The estimated daily intake is the final output of the
exposure component of the risk modelling framework described in
Fig. 1. To estimate the human health risk resulting from this exposure, it
was then compared to the individual pesticide’s acceptable daily intake
(ADI) (mg.kg− 1.day− 1), the EFSA’s regulatory thresholds for chronic
health, in a risk quotient approach to provide a human health risk
assessment (EFSA, 2019, 2021):

RQ =
EDI
ADI

(15)

An additive approach, as recommended by the EFSA, was taken to
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assess the worst-case-scenario human health risk assuming exposure to a
mixture of all modelled pesticides. Therefore, total health risk was
calculated as the sum of risk quotients for each individual pesticide (i):

RQtotal =
∑

RQi =
∑ EDIi

ADIi
(16)

The proposed approach to adapting input variables in a probabilistic
risk model for climate change projections may be applied using regional
projections for any locations to suit users’ needs. The use of the proba-
bilistic approach described in Sections 2.3 enabled the model to consider
the uncertainty and variability associated with the model, input pa-
rameters and importantly, climate projections for future scenarios.

2.3. Probabilistic modelling methodology

In developing the probabilistic approach used for the risk modelling
framework in this study, input parameters, including climate variables
under future scenarios, soil data, and pesticide properties, were fitted
with probability distributions based on literature and best-fit analysis to
available data. The probability distributions and statistical parameters
developed for the input data are detailed in Section 2.4. A Monte-Carlo
simulation method was then applied to populate the output distributions
by repeatedly running the model with randomly selected inputs from the
defined distributions. For each iteration of the model, one random
sample was taken from each input distribution providing a distribution
of model outputs. The model was run for 1,000,000 iterations for each
location examined herein which was found to be more than enough to
ensure statistical stability. This approach was taken in developing dis-
tributions for growing season conditions (Section 3.1), as well as esti-
mating pesticide concentrations in drinking water and resulting health
risk (Section 3.2 and 3.3). The use of Monte-Carlo simulations allowed
incorporation of input data uncertainty and variability into the model,
providing a distribution of estimated pesticide concentrations and
resulting pesticide risk quotients, considering the effects of uncertainty
and variability on model outputs.

2.4. Model parameterisation

A hypothetical agricultural site representing the average Irish con-
ditions was developed by the authors in a previous study (Harmon
O’Driscoll et al., 2024). It is similar to the site conditions at both loca-
tions in the current study, and so was used to represent their soil and
agricultural conditions herein. Therefore, any differences in pesticide
risks at the two locations will be a result of the regional variation of
climate impacts as opposed to the influence of minor variations in site
conditions. The influence of climate change on the climate statistical
parameters used in assessing pesticide risk are discussed in Section 3.1.

The Irish Department of Agricultural, Food and the Marine has listed
82 pesticides used on Irish grassland and fodder based on the most
recent pesticide usage surveys (DAFM, 2020, 2021, 2024). A previous
risk screening study of these pesticides identified 15 key pesticides based
on their mobility, toxicity to humans, quantity of use in Ireland, or a
combination of three (Harmon O’Driscoll et al., 2022). Details of the
pesticide properties, their classifications, and their statistical parameters
used in the modelling process are available in Table S1. National pop-
ulation data for body weight and water consumption rates were ob-
tained from the Irish Unversities Nutrional Alliance national surveys and
USEPA guidelines to probabilistically modelling pesticide exposure rates
(USEPA, 2004; IUNA, 2011, 2021). The statistical parameters developed
for site and population data used in this study are presented in Table S2.

3. Results and discussion

3.1. Impact of climate change on growing season

Climate projections for Ireland indicate that daily temperatures will

rise in the future, and this is likely to affect growing season conditions
across the country which may have significant effects on the agricultural
sector. At both study locations daily temperatures are projected to in-
crease, with temperatures increases in the NE site ranging by 1.0 ◦C for
RCP4.5 (2050) to 2.65 ◦C for RCP8.5 (2100) relative to baseline con-
ditions, and 0.92 to 2.42 ◦C at the SW site for the same conditions,
respectively. All modelled future climate scenario showed that rising
temperature resulted in a longer growing season that begins earlier in
the year (Fig. 2). Under baseline conditions, the average growing season
length in the NE site is around 280 days, but this increases substantially
for all future scenarios, with season length increasing to 310 days under
RCP4.5 (2050) and to 345 day under RCP8.5 (2100) conditions,
equivalent to a 7–19 % increase in growing season days. The same
climate conditions result in an average 340–360 day long growing sea-
son in the SW site, compared to 320 days under baseline conditions
(Fig. 2). These changes suggest that climate change will have a slightly
greater impact on growing season in the north-east compared to the
south-west, which is due to the larger increase in projected temperatures
(Table 1). Despite climate change having a greater overall impact on the
growing season in the NE site, the SW site has a longer agricultural
season under all scenarios due to baseline conditions, as shown in Fig. 2.

Changes to growing season are important when considering pesticide
risks as they define the period of the year when pesticides tend to be
applied. In Ireland, under current climatic conditions accounting for
sustained cold periods in inland regions, the average national growing
season commonly starts in March and ends around November (Teagasc,
2017), therefore application often avoids the heavier precipitation
associated with winter in the Northern Hemisphere (November –
February in Ireland). However, as seen in the shift of the start date
curves in Fig. 2, the growing season for all future climate scenarios is
likely to start much earlier in the year. The start of the season shifts from
the beginning of March in the north-east under baseline conditions, to
mid-January under RCP8.5 (2100) conditions, and from the start of
February to almost the beginning of the year in the SW site for the same
scenarios. Therefore, the agricultural season is projected to start and end
in winter months for the Ireland. Future application periods are there-
fore likely to coincide with these heavier daily precipitation events in
Ireland as future daily winter precipitation is projected to have the
greatest increase of the four seasons (Nolan and Flanagan, 2020). This is
particularly likely for RCP8.5 (2100) conditions associated with the
longest growing season projections in both locations, where the 50th
percentile start and end date have shifted to early/mid January and
mid/late December, respectively.

In the NE site, average precipitation across a growing season in-
creases from 590 mm/season (baseline conditions) to 653 mm/season
(RCP4.5 (2050)), and 788 mm/season (RCP8.5 (2100)), corresponding
to a 3.6 % – 12 % increase in daily precipitation over a growing season.
Similarly, in the SW site, daily average precipitation is projected to in-
crease by 7.6 % – 16.5 % under the same climatic conditions relative to
baseline conditions. This increase in precipitation intensity during pe-
riods of pesticide application will lead to greater runoff volumes, higher
rates of pesticide exposure in drinking water supplies, and therefore
increases in health risks. The findings indicate that there is regional
variation in the changes to length of growing season and resulting daily
precipitation over the growing season period, with the SW site likely to
experience wetter growing season. Therefore, it is likely that there will
be more opportunity for pesticide runoff in the SW site than the NE site
which may lead to regional discrepancies in risk. This will be discussed
in more detail in Section 3.3.

This analysis and the percentage changes in temperature, precipita-
tion and growing season were used to inform the development of
probability distributions for climate variables (Eqs. (2)–(8) in Section
2.2). Table 2 presents the developed climate parameters for each sce-
nario, which were used in to predict changes in pesticide concentrations
and resulting risks (Eqs. (9)–(16) in Section 2.2) under future climate
scenarios at the two study as presented in Section 3.2 and Section 3.3.
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Fig. 2. (a) Distribution of growing season length for the five model scenarios in Dunleer (NE); (b) Distribution of growing season length for the five model scenarios
in Causeway (SW); (c) Distribution of growing season start date for five model scenarios in Dunleer (NE) and (d) Distribution of growing season start date for five
model scenarios in Causeway (SW).

Table 2
Statistical parameters for climatic parameters under the different climatic scenarios.

Scenario Start of growing seasona Growing season length (days) Growing season daily precipitation (mm.day− 1)b

Distribution μ σ Distribution μ σ Distribution a b

Dunleer (North-East site)
Baseline (1990) Normal 55 16 Normal 288 20 Gamma 0.29 7.14
RCP4.5 (2050) Normal 40 19 Normal 308 21 Gamma 0.27 7.76
RCP8.5 (2050) Lognormal 26 22 Normal 319 18 Gamma 0.27 7.93
RCP4.5 (2100) Lognormal 29 24 Normal 319 20 Gamma 0.27 8.14
RCP8.5 (2100) Normal 12 11 Normal 344 14 Gamma 0.26 8.89

Causeway (South-West site)
Baseline (1990) Lognormal 33 16 Normal 322 15 Gamma 0.44 6.39
RCP4.5 (2050) Lognormal 13 11 Normal 343 15 Gamma 0.37 8.05
RCP8.5 (2050) Lognormal 9 9 Normal 349 12 Gamma 0.37 8.38
RCP4.5 (2100) Lognormal 9 8 Normal 349 12 Gamma 0.37 8.43
RCP8.5 (2100) Lognormal 4 5 Normal 358 6 Gamma 0.35 9.36

a Note: Day 1 = 1st January.
b Statistical parameters for daily precipitation consider the changes in growing season due to daily temperature projections, and the changes in daily precipitation

due to projected precipitation for each climate scenario.
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3.2. Impact of climate change on pesticide exposure and risk

As discussed in the introduction, there is a crucial gap in in current
pesticide risk science as there is a lack of analysis on how climate change
may influence pesticide contamination of drinking water and resulting
human health effects. The following sections present the findings from
an Irish case study to illustrate how the proposed methodology may be
applied to quantify the climate change impacts on pesticide concentra-
tions and pesticide-related human health risks, thereby provide risk-
based information for decision making and adaptive practices. This
analysis was conducted at two locations in Ireland. However, to facili-
tate detailed discussion of the results, this section will be focus on one
location only (Causeway in the south-west) and will compare 2100
conditions to baseline conditions. Section 3.3 will present results for
both locations to compare the influence climate change has on pesticide
risk in both sites, thus illustrating the regional variability of climate
change impacts. However, detailed results for all climate scenarios, and
changes to exposure/risk in the north-east are provided in the Supple-
mentary Information (Fig. S2 – S12). The results presented in this section
are derived from the probabilistic modelling framework outlined in
Section 2.2, with baseline conditions representing current pesticide
exposure levels and future projections incorporating climate-adjusted
factors (Eqs. (2)–(8)). These adjustments account for the combined ef-
fects of changes in temperature, growing season and precipitation as
discussed in Section 3.1. By integrating these factors, the methodology
quantifies how climate change influences pesticide concentrations in
drinking water and the associated health risks.

Pesticide concentration in surface water due to runoff is strongly
related to precipitation (Utami et al., 2020). However, precipitation
must exceed 20% of the soil’s maximum potential retention for runoff to
occur (Eq. (1)). Therefore, based on the soil conditions and land-use
combination at study site, runoff will only occur when the precipita-
tion threshold of 8.3 mm.day− 1 is reached (Harmon O’Driscoll et al.,
2024). Under baseline conditions, precipitation events that trigger
runoff will occur on average 35 times a year. However, climate change is

projected to increase daily precipitation intensity, with compounding
effects due to the extension of the growing season. Therefore, the
number of annual runoff events are projected to increase on average to
42 days under RCP4.5 and 44 days annually under RCP8.5 by 2100.
While this will increase the rate of pesticide loss to drinking water
supplies, it is important to note, that based on the model data, 88–90 %
of simulated days are unlikely to receive sufficient precipitation to
trigger a runoff event under any model scenario (i.e. reach the 8.3 mm.
day− 1 threshold) (USDA, 2004b; Harmon O’Driscoll et al., 2024). As a
result, the results in Fig. 3 are the 95th percentile pesticide concentra-
tions only, as median values equate to zero runoff, and zero pesticide
concentrations.

Triclopyr has the highest simulated concentration for all scenarios
modelled, followed by MCPA, 2,4-D and mecoprop (Fig. 3). These pes-
ticides occur in the highest concentrations due to their very low
adsorption coefficients (Syafrudin et al., 2021) (Table S1), making them
unlikely to adsorb to soil, and therefore are more readily available for
runoff. Additionally, these pesticides have relatively high application
rates (EFSA, 2021), which increases the amount of pesticide available
for transport. For both RCP4.5 and RCP8.5 projections, pesticide con-
centrations increase compared to current climates, with the highest
concentrations occurring under RCP8.5 conditions. The EU’s limit of 0.1
μg.l− 1 for an individual pesticide in drinking water (European Com-
mission, 2009) is exceeded by five pesticides based on current climatic
conditions. Under both RCP4.5 and RCP8.5 conditions, half of the fifteen
modelled pesticides are predicted to exceed this limit at the 95th
percentile concentration (Fig. 3). The simulated total concentration of
the modelled pesticides also exceeds the EU’s legal limit of 0.5 μg.l− 1
total concentration in all modelled scenarios. However, under RCP8.5
conditions, the total concentration is predicted to be six times the legal
limit, compared to 1.5 times the limit under current climatic conditions
(Fig. 3).

The effect of climate change on simulated pesticide concentrations
becomes more evident when the percentage changes to predicted con-
centrations are compared. Under RCP8.5 (2100), the worst-case climate

Fig. 3. 95th percentile predicted environmental concentration (μg.l− 1) for 2100 conditions in Causeway (SW).
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scenario in this study, pesticide concentrations increased by an average
of 36 %, compared to 24 % under RCP4.5 (2100) (Fig. S3). This can be
explained by the differences in climate change impacts on model climate
variables: under RCP8.5 (2100) conditions, mean daily precipitation
during the growing season increases by over 16 %, and the resulting
number of days where runoff threshold (8.3 mm.day− 1) is exceeded
increases by 9 days compared to baseline conditions (an increase of 26
%). In comparison, mean precipitation increases by 11 % and the
number of runoff events only increase by 14 % under RCP4.5 (2100).
Therefore, under RCP 8.5 (2100), not only are there more runoff events
than other modelled scenarios, but the resulting level of runoff is greater
due to the projected increase in precipitation. As a result, the rate of
exposure also increases substantially for both adults and children as can
be seen in Tables S3 and S4. This significant increase in exposure leads to
higher levels of health risks in both adults and children under future
climatic conditions as shown in Fig. 4.

Despite the increase in EU drinking water quality limits exceedances
and pesticide exposure rates, the resulting level of exposure was found to
remain well below the acceptable daily intake under future climate
scenarios. Therefore, health risks were found to be very low for all
modelled pesticides (Fig. 4). The 99th percentile risk quotients for the
fifteen modelled pesticides are well below a risk quotient of one.
Therefore, based on this widely utilised metric, the risk of adverse health
effects is extremely low for all modelled pesticides (EFSA, 2019).
Mecoprop posed the highest risk to both adults and children as it has
potential to cause developmental issues and therefore has a low
acceptable daily intake value (0.01 mg.kg-1.day− 1) (EFSA, 2021). The
second highest risk level was attributed to triclopyr, which has a higher
allowable daily intake (0.03 mg.kg-1.day− 1) than mecoprop but has
much higher simulated concentrations (Fig. 4). Despite the increasing
likelihood of exposure to pesticides due to climate change effects, the
resulting level of health risks posed to humans is still very low even
under the most extreme climate scenario (RCP8.5 2100). Furthermore,
the total risk from exposure to pesticides, assuming an additive effect of
all modelled pesticides (EFSA, 2019), is also well below acceptable
levels, ranging from a minimum of 0.026 for adults under baseline

conditions to 0.080 for children under RCP8.5 (2100).
In fact, it was found that there was a less than a 0.01 % chance of

exceeding an unacceptable level of risk, with 99.7 % of model simula-
tions for mecoprop, the pesticide with the highest risk quotient in Fig. 5,
producing a risk quotient <0.1. Although levels of risks are relatively
low for all climate scenarios, climate change will influence the level of
risk arising from pesticide exposure as pesticide risk was found to in-
crease by an average of 24 % (RCP4.5 2100) to 37 % (RCP8.5 2100)
across the various pesticides, relative to current conditions (Fig. 5). Due
to the strong relationship between exposure rate and resulting health
risk, RCP8.5 (2100) was shown to potentially have the greatest influence
on pesticide health risk. The impact that climate change has on both the
rate of pesticide loss to runoff and resulting health risk highlights the
need for awareness in terms of agricultural practices and behaviours. For
example, it has been shown that climate change will likely extend the
growing season period for crops. This may also increase the abundance
of pests, such as insects and fungi, and therefore cause an increase in
pesticide usage or change in active ingredient for more effective treat-
ment (Gagnon et al., 2016). Therefore, it is important to factor in climate
change impacts in risk assessments, especially when land use or pesti-
cide use may change into the future.

3.3. Regional variability in climate effects

The previous section focused on the changes in pesticide concen-
trations at one study location, however climate variable data in Section
2.1 and findings in Section 3.1 highlight the significant regional varia-
tion in climate effects at the two locations. Existing pesticide-related
environmental risk studies tend to use global climate change models
or lower-resolution climate projections in their analysis of climate
change effects which cannot account for this fine spatial variability, for
example Martínez-Megías et al. (2023) used projections from the Max
Plank Institute Earth System Model at a base resolution of 200 km (MPI-
ESM LR, DKRZ (2013)). However, as discussed in the introduction, low
resolution projections cannot account for the highly spatially variable
effects of climate change (Kotamarthi et al., 2021) and the lack of

Fig. 4. 99th percentile pesticide risk level for adults and children for baseline and RCP8.5 (2100) conditions in Causeway (SW).
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regionally specific risk assessments can limit the cost-effectiveness and
resource efficiency of climate action and adaptation (Ryan and Stewart,
2020). Therefore, this section analyses climate change impacts at a local

scale using high-resolution climate projections (at a 4 km resolution) to
investigate whether climate change will result in regional-specific
changes to pesticide-related risks. To facilitate concise but detailed

Fig. 5. Percentage change 99th percentile risk quotient (child) for future scenarios relative to current climate.

Fig. 6. Percentage change to 99th percentile RQ (child) for 2100 relative to current in Dunleer (NE) and Causeway (SW).
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discussion of the results, Fig. 6 presents the percentage increase in
pesticide risk for only five pesticides, which were identified as the
highest risk pesticides (Fig. 4), under RCP4.5 and RCP8.5 (2100) (See
Fig. S12 for all modelled pesticides).

In the NE site, the influence of climate change results in an average
17 % increase in health risks under RCP4.5, and a 26 % increase under
RCP8.5 conditions by the end of the century across the five pesticides.
However, health risks from pesticides in drinking water are on average
50 % higher in the SW site than the NE site under baseline conditions
and increase to almost 90 % higher under RCP8.5 (2100) conditions
(Fig. S11). The differences in climate impacts across the two locations
can be partly explained by considering the influence of baseline condi-
tions on the runoff model. Firstly, baseline daily temperatures are higher
in the SW (μ = 10.6 ◦C) compared to the NE (μ = 9.9 ◦C), and as a result,
the growing season is on average 34 days longer in the SW than the NE.
Therefore, the likelihood of pesticide application during periods of
wetter weather for baseline conditions is higher in the SW, as previously
discussed. This impact is amplified under RCP8.5, whereby the growing
season length is effectively the entire year in the SW site. More impor-
tantly, however, under baseline conditions, the south-west of Ireland
experiences significantly more precipitation than the north-east (1074
mm/y versus 785 mm/y), as well as heavier precipitation days. This
regional variability is predicted to intensify in the future, with climate
projections showing a greater increase in heavy precipitation periods
along the west coast of Ireland (Causeway area) than in eastern regions
(Dunleer area) (O’Loughlin and Mozafari, 2023; O’Brien et al., 2024).
This is particularly important due to the bimodal relationship between
precipitation and runoff, where runoff only occurs during periods of
heavy precipitation i.e. 8.3 mm.day− 1 for the site conditions considered
above. The projected changes to precipitation in the SW site result in an
increase in the number of days where runoff may occur, rising from 35
days under baseline conditions to 42 and 44 days for RCP4.5 and
RCP8.5, respectively. The NE site, however, experiences far fewer runoff
events, with precipitation exceedances occurring only 24 times a year on
average for baseline conditions, increasing to a maximum of 30 under
RCP8.5 (2100). Additionally, the volume of runoff is also much less, as
overall daily precipitation in the south-west is much greater than the
north-east under baseline and future climatic conditions. Average daily
precipitation during the growing season in the NE site increases from a
baseline of 2.05 mm.day− 1 by a maximum of 11.7 % (2.29 mm.day− 1,
RCP8.5 (2100)). In the SW site, daily precipitation increases from an
average of 2.78 mm.day− 1 by 16.5 % (3.24 mm.day− 1, RCP8.5 (2100)).
Therefore, although climate projections suggest that climate change has
a slightly greater impact on climate variables in Dunleer (Table 2), the
changes to climate variables resulting from climate change have a
greater impact on pesticide runoff and resulting health risks in the SW
site. The results indicate that a national adaptation strategy based on a
single-location could under/overestimate pesticide-related health risks
at a local scale and therefore high-resolution climate projections to ac-
count for the spatial variability of climate effects and illustrates that.
Consequently, this analysis emphasises the need to carry out localised
assessment of climate impacts on pesticide risks.

4. Conclusions

This study provides users with a practical and accessible predictive
model framework for the integration of downscaled, bias-corrected
climate projections into a quantitative human health risk assessment,
providing an anticipatory analysis of pesticide-related human health
risks, an area which is currently overlooked in pesticide risk science.
Climate projections for the study locations indicated an increase in
average daily precipitation and temperature, in line with increases
across the North Atlantic region, which will likely affect pesticide con-
centrations in surface waters. A case study of 15 pesticides in two lo-
cations in Ireland was used to illustrate the application of the proposed
framework and to provide insights into how pesticide exposure and

associated health risks may change under future climates. Resulting
human health risks were projected to increase for all climate scenarios,
with the greatest increase in health risks at both study sites occurring
under RCP8.5 (2100). The findings demonstrate that increased precip-
itation intensity, coupled with extended growing seasons due to higher
daily temperatures, will likely elevate pesticide runoff and contamina-
tion risks, particularly in regions with already high precipitation levels.
However, despite the projected rise in exposure, estimated human
health risk remained below EU regulatory health thresholds, indicating
that while climate change will intensify pesticide contamination in
drinking water, the likelihood of adverse human health effects remains
low under the modelled scenarios. The integration of high-resolution
climate projections allowed for detailed regional comparison of
climate change impacts on pesticide exposure and risks, addressing a
recognised need for localised risk assessment for climate adaptation.
Results indicated significant regional variability, with climate change
shown to result in greater pesticide risks in the south-west due to
compared to the north-east. This underscores the potential shortcomings
of national-scale climate adaptation strategies that do not account for
regional differences, emphasizing the need for localised assessments to
optimise risk mitigation efforts.

Despite the low predicted risks, this study highlights the need to
account for climate change impacts in pesticide risk assessments to
inform adaptation and mitigation strategies for the future where
necessary. As a result, this study has wide reaching implications for
stakeholders, policymakers and pesticide research. For example, the
findings illustrate that climate change may increase pesticide human
health risks beyond which is not currently considered in EU regulations.
Therefore, agricultural policymakers should consider incorporating
climate change assessments to future-proof their regulation. Addition-
ally, climate adaptation strategies should consider developing local/
regional strategies, as discussed previously, that may provide more
targeted responses to climate change impacts and enable more efficient
use of resources. Furthermore, while findings in the presented case study
suggest that overall increases in human health risks remain too low to
require mitigation, the results also highlight that climate change has the
potential to impact pesticides risks and potentially risk associated with
other contaminants. Therefore, water utilities should consider incorpo-
rating climate projections into their assessments to enable future-
planning of water quality management and infrastructure investment
plans.

This study contributes to the literature quantifying the impacts of
climate change on health risks by demonstrating how multi-ensemble,
bias-corrected projections from downscaled regional climate models
may be incorporated into probabilistic models, using a practical
approach suitable for international users. However, this study is some-
what limited in its representation of future climate scenarios due to the
focus only on quantifying the direct impacts of climate change on
pesticide risk by considering changes to precipitation and temperature.
There is also a need to expand the research to consider the indirect ef-
fects of climate change, including changes to land productivity, pest
prevalence, and changes to agricultural policy and land-use, which may
have a compounding effect on pesticides risks. These factors will likely
affect land-use, thereby changing types of pesticides in use, as well as
increasing/decreasing pesticide application rates in response to pest
prevalence and policy changes. Therefore, it is important that influence
on risks arising from agrochemicals be considered in climate adaptation
strategies especially in terms of future public health and environmental
health strategies. Furthermore, this study provided a first step towards
probabilistic assessment of human health risks under future climates,
however it relied on the commonly used risk quotient at the risk char-
acterisation stage to quantify health risk levels which does not enable
detailed analysis of the uncertainty associated with pesticide toxicity.
Alternative health impact models for risk characterisation could also be
incorporated into this approach to improve representation of health
impacts in detailed analysis and provide more precise information
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regarding health impacts arising from pesticide exposure.
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