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1 Introduction
This research project investigated the relationship between sphere packing prob-
lems, lattices, and modular forms, as discussed in Noam Elkies’ paper ’Lattices,
Linear Codes, and Invariants, Part 1’. [Elk00] This report begins by giving a
brief description of the sphere packing problem, which motivates what follows.
The abstract mathematical structure of a lattice is then introduced, and its con-
nection to the sphere packing problem by way of the simplifying ’lattice packing’
assumption is explained. The densest lattice packing in R2 is described and its
optimality with respect to density is proved. In the final section, the theta
function for a lattice is defined and it is briefly outlined why theta functions
for some lattices are examples of modular forms - a type of analytic function
widely studied in branches of mathematics such as number theory which initially
appear unrelated to the sphere packing problem.

2 The Sphere Packing Problem
The sphere packing problem generalizes certain problems which arise quite
naturally from the study of the physical geometry of familiar two- and three-
dimensional spaces and can be stated easily and intuitively.

• Given an unlimited supply of identical coins to be placed on a surface such
as a table top, what percentage of the table top can be covered by the
coins if no two ever overlap?

• How can balls be arranged in a three-dimensional box so as to fit the
maximum possible number of balls in the box? (This is a version of a
problem posed by Kepler, who sought to identify the most space-efficient
way of stacking cannonballs.) [Elk00]

Abstracting these problems, both can be regarded as seeking an arrangement
of identical balls in Rn for n = 2, 3 where the interiors of no two balls overlap
and the greatest possible proportion of some convex region of Rn is covered by
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Figure 1: The hexagonal lattice packing is the densest possible in R2

the balls. Although physical intuition is lacking for n = 4, 5, ..., a similar mathe-
matical problem can be posed for any arbitrarily high number of dimensions. A
sphere packing is an arrangement of infinitely many n-dimensional of radius
r with non-overlapping interiors in Rn. (The term ’sphere packing’ was coined
before modern mathematical terminology which regards a ball as a volume in
n-dimensional and a sphere as its surface became current.) For convex subsets
of R2 it can be shown that the maximum proportion of the subset that can be
covered by a sphere packing approaches a limit, L as the volume of the subset
approaches infinity. This L is defined as the maximum sphere packing den-
sity for Rn. The packing which achieves this density will be referred to as the
densest packing or optimal packing with respect to density. The sphere
packing problem in n dimensions asks what the value of the maximum sphere
packing density is in Rn

The sphere packing problem problem is a difficult one and despite intense
study over many decades it has only been solved for four values of n, specifically
n = 2 [Fej42], n = 3 [Hal+17], n = 8 [Via17], and n = 24 [Coh+17]. Even for
the comparatively ’easy’ case of a sphere packing in R2, the densest packing was
only proved optimal in a rigorous manner in the 1940’s, although a description
of this packing had been known since antiquity and it had long been conjectured
to have maximum density. (The densest packing for n = 2 is the ’hexagonal
packing’, pictured in Figure 1 and which will be discussed in more detail in
Section 4). For the remaining cases where a best packing is known, a proof
optimality has been provided only in the twenty-first century.

In the four non-trivial cases where it is known, the densest packing is a
special type called a ’lattice packing’, in which the centres of the balls form
a structure called a lattice in Rn. It is a somewhat easier problem to find
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Figure 2: The integer coordinate lattice in R2, with standard basis vectors.

the maximum packing density among lattice packings than that for all possible
packings. The fact that these densest lattice packings have turned out to be
optimal among all packings for all dimensions in which an optimal packing
is known gives a rationale for focusing on this easier class of problems as a
first attempt at tackling general sphere packing problem. Further study lattice
packings natural requires that lattices themselves be descibed in some degree of
detail, and this is the purpose of the next section.

3 Lattices
3.1 Definition and Basic Example
Lattices may be defined for any vector space, but for the purposes of this report
we consider only those in Euclidean space, Rn, for arbitrary n

Definition 3.1 (Lattice). Given a collection of linearly independent vectors,
−→x1, −→x2, ..., −→xn ∈ Rn (i.e. a basis of Rn), the set of all integer linear combinations
of −→x1, −→x2, ..., −→xn ∈ Rn is a lattice in Rn, denoted Γ. Thus:

Γ := {y ∈ Rn : y =
n∑

i=1
kixi | k1, ..., kn ∈ Z}

Example 3.1. The set of all vectors with integer coordinates in Rn is clearly
a lattice, as it comprises all integer linear combinations of the standard basis
vectors. Figure 2 illustrates this lattice for the n = 2 case.
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3.2 Generator Matrices
A second important definition is that of a generator matrix of a lattice.

Definition 3.2 (Generator Matrix of a Lattice). Given a lattice Γ ⊂ Rn, if the
lattice consists of integer linear combinations of basis −→x1 = ⟨x1,1, ..., xn,1⟩, ..., −→xn =
⟨x1,n, ..., xn,n⟩, then the matrix AΓ such that:

AΓ := [xi,j ]1≤i,j≤n ∈ Rnxn

is a generator matrix for Γ. (A generator matrix is thus a matrix whose columns
are basis vectors which are combined in integer linear combination to generate
lattice members.)

Remark 3.1. If AΓ is the generator matrix for lattice Γ, it is clear from the
above definitions that we can express Γ as follows:

Γ = {AΓ
−→z | −→z ∈ Zn}

Example 3.2. For the lattice of integer coordinate vectors in Rn, the nxn identity
matrix is a generator matrix.

Any lattice in Rn can be represented by an invertible nxn generator matrix,
and any invertible matrix defines a lattice. However distinct matrices do not
necessarily represent distinct lattices - for example, rearranging the columns of
a matrix gives a different matrix which generates the same lattice. Other cases
of distinct matrices generating the same lattice exist as well. Fortunately, there
is a simple criterion which determines whether two matrices generate the same
lattice, the statement of which requires another definition.

Definition 3.3 (Integer General Linear Group). The integer general linear
group of degree n, GLn(Z), is a subset nxn matrices with integer coordinates
defined as follows:

GLn(Z) := {M ∈ Znxn | det(M) = ±1}

GLn(R) is defined analogously. SLn(Z) and SLn(R), the special linear
group of Z and R, consist of matrices whose determinet is +1.

Theorem 3.1. Invertible nxn matrices A, B generate the same lattice if and
only if there exists M ∈ GLn(Z) such that B = AM

Proof. Let A, B be invertible matrices such that −−→vA,1, ..., −−→vA,n are the columns
of A and −−→vB,1, ..., −−→vB,n are the columns of B. Also, let ai,j be the (i, j)th entry
in A and bi,j be the (i, j)th entry in B. The lattice generated by A consists of
all integer linear combinations of the linear independent vectors −−→vA,1, ..., −−→vA,n

and the lattice generated by B consists of all integer linear combinations of
−−→vB,1, ..., −−→vB,n.

Now assume matrices A, B generate the same lattice, Γ. Then for 1 ≤ j ≤ n:
vB,j = Bej where ej ∈ Zn is the vector with 1 as the jth coordinate and 0 for
all other coordinates. Hence, by Remark 3.1, −−→vB,j ∈ Γ.
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A is also a generator matrix for Γ, so for all 1 ≤ j ≤ n, Definition 3.2 implies:

∃m1,j , ..., mn,j ∈ Z : −−→vB,j =
n∑

k=1
mk,j

−−→vA,k

Considering −−→vB,j entry-wise, this implies:

∀1 ≤ i, j ≤ n : bi,j =
n∑

k=1
mk,jai,k =

n∑
k=1

ai,kmk,j

And this means B = AM where M is the nxn matrix M = [mk,j ]1≤k,j≤n.
Further, M ∈ Znxn as it was assumed mk,j ∈ Z for all k, j.

A similar argument proves there must an integer valued matrix K such that
BK = A. Then (BK)M = B and so there must exist M−1 = K.

It is a basic result that Det(M−1) = 1
Det(M) . However, both M and

M−1 = K are integer valued matrices, and therefore their determinants must
both be integers (as the Laplace Expansion Formula for Determinant expresses
the determinant as a sum of products of matrix entries). Det(M) and 1

Det(M)
can only both be integers if Det(M) = ±1. Hence M ∈ GLn(Z) and this proves
the ’only if’ part of the theorem statement.

For the ’if’ part of the theorem, assume:

∃M ∈ GLn(Z) : B = AM

Letting mi,j be the (i, j)th entry of M, for all j such that 1 ≤ j ≤ n:

−−→vB,j =
n∑

i=1
mi,j

−−→vA,i

As every mi,j is an integer, it follows that all integer linear combinations of
the columns of B, −−→vB,j can be expressed as integer linear combination of columns
of A. Therefore, by Definition 3.2, the lattice generated by B is contained in
the lattice generated by A. However, as GLn(Z) is a group, if M ∈ GLn(Z),
then M−1 ∈ GLn(Z), and A = BM−1. Thus it can similarly be shown that the
lattice generated by A is contained in the lattice generated by B. Hence the
lattices generated by A and B are in fact the same. completing the ’if’ part of
the proof.

A simple but important property of lattices is that of minimum distance.
Definition 3.4 (Minimum Distance of a Lattice). For lattice Γ ∈ Rn, the
minimum distance of Γ, m(Γ) is defined:

m(Γ) := {Min(|γ1 − γ2|)}γ1 ̸=γ2∈Γ

where |x| is the Euclidean length of vector x ∈ Rn

The lattice packing associated with a lattice Γ is the sphere packing that
results when a ball of radius 1

2 m(Γ) is placed at each point of the lattice. It
is clear that such an arrangement satisfies the constraint placed on a sphere
packing that no two balls can overlap.
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Figure 3: Homothetic lattices related by rotation and constant multiplication.

3.3 Homothecy
Generator matrices offer a concise way of describing lattices. It is therefore of
interest to investigate what features of a lattice packing can be deduced from
the generator matrix of the associated lattice. It is of especially fundamental
importance to determine when two generator matrices give rise to lattices with
the same lattice packing density. Loosely speaking, homothecy is a relationship
between lattices defined such that homothetic lattices give rise to packings of
the same density.

Obviously, if two generator matrices generate the same lattice then the den-
sity of the lattice packing associated with each of them is the same. By Theorem
3.1, then, a lattice with generator matrix B has the same packing density as
lattice with generator matrix A if there exists M ∈ GLn(Z) such that B = AM .
However, this does not exhaust the ways in which lattice packings can have the
same density.

If the lattice generated by B is obtained by rotating all vectors in the lat-
tice generated by A through some fixed angle about the origin, it is clear the
associated lattice packings must have the same density, even though the lattices
A and B are different. Rotation in Rn is represented by left multiplication by
members of the special orthogonal group of R of dimension n, SOn(R). Thus
generator matrices A and B generate lattices with the same packing density if
there exists U ∈ SOn(R) such that B = UA

Furthermore, if all vectors in a lattice are multiplied by a positive, real,
constant, α then the packing density is not changed. Intuitively, multiplication
of all vectors in the lattice by α > 0 means the number of points in a given
volume of Rn will change by a factor 1

αn , but the minimum distance of the lattice
changes by a factor of α, implying the volume of each ball in the associated
packing changes by a factor of αn. These two effects ’cancel out’ so that constant
multiplication results in no change in the lattice packing density.

The considerations above motivate the definition of homothecy. Distinct but
homothetic lattices are illustrated in Figure 3

Definition 3.5 (Homothecy of Lattice). Lattices ΓA and ΓB , with generator
matrices A and B respectively are homothetic if there exist M ∈ GLn(Z),
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U ∈ SOn(R) and α > 0 such that:

B = αUAM

For a matrix, X, of determinant d ̸= 0, multiplication by positive constant
|d|−(1/n) gives a matrix, X1 of determinant ±1. For the X1 = −1 case, right
multiplication by −I ∈ GLn(Z), where I is the nxn identity matrix, gives a
matrix, X2 of determinant +1. Hence, every invertible matrix is homothetic to
at least one matrix of determinant +1, i.e. a member of SLn(R). Therefore, all
homothecy classes (i.e. sets of all nxn matrices homothetic to some representa-
tive matrix of set) contain members of SLn(R). This allows homothecy classes
to be identified with members of the double coset space:

SOn(R) \ SLn(R)/GLn(Z)

In the coset space, matrices are regarded as equivalent (i.e. in the same
coset) if one can be transformed to the other by left multiplication by mem-
bers of SOn(R) and right multiplication by GLn(Z). Each coset in SOn(R) \
SLn(R)/GLn(Z) is then referred to as a homothecy class of lattice - i.e. it is a
set of generator matrices for lattices all of which are homothetic, and thus have
the same density of associated sphere packing.

4 The Optimal Lattice Packing in R2

The definition of homothecy classes for n-dimensional lattices above of course
applies to lattices in R2 so that the homothecy classes of R2 lattices can be
identified with:

SO2(R) \ SL2(R)/GL2(Z)

In what follows, the double coset space is identified with a region of the
complex upper half plane, H, in such a way that the complex number x + yi
with which a coset is identified encodes information about the packing density
of the lattice. It is this encoding which allows the lattice packing of maximum
density to be identified. As previously mentioned, this can also be shown the be
the densest of all possible packings in R2, including those not based on lattices,
but the proof of that fact is beyond the scope of this report.

4.1 SO2(R) \ SL2(R) and the Upper Half Plane
Theorem 4.1. Every coset in SO2(R) \ SL2(R) has a unique repersentative in

the form: y−1/2
(

1 x
0 y

)

Proof. Consider A =
(

a b
c d

)
∈ SL2(R). Note that Det(A) = ad − bc = 1

by definition. For this arbitrary member of the special linear group for 2x2
matrices, it must be shown that A can be transformed into a unique matrix
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in the form y−1/2
(

1 x
0 y

)
by left multiplication by members of SO2(R). Note

that SO2(R) may be expressed as:

SO2(R) =
{

Sθ =
(

Cos(θ) −Sin(θ)
Sin(θ) Cos(θ)

)
for θ ∈ [0, 2π)

}
Two cases must be considered.

CASE 1: c = 0
As Det(A) = 1, therefore a = 1

d , and the matrix A has the form:

A =
( 1

d b
0 d

)

S0 = I, Sπ = −I ∈ SO2(R) and so Apos =
( 1

|d| b

0 |d|

)
is a member of the

same coset as A. Therefore, letting y = d2 and x = db then gives a member of
the coset in the desired form.

CASE 2: c ̸= 0
Consider a matrix Mθ in the SO2(R) \ SL2(R) coset of A:

Mθ = SθA =
(

aCos(θ) − cSin(θ) bCos(θ) − dSin(θ)
aSin(θ) + cCos(θ) bSin(θ) + dCos(θ)

)
=

(
m1 m2
m3 m4

)
, 0 ≤ θ < 2π

Now, as c ̸= 0:

∃θ1 ∈ (0, π) : Cot(θ1) = Cot(π + θ1) = −a

c

For θi = θ1, π + θ1, clearly m3 = 0. Further, as −a
c = Cot(θi) = Cos(θi)

Sin(θi) ,
m1 =

(
−a2−c2

c

)
Sin(θi). Finally, SO2(R) ⊂ SL2(R), so Mθi = SθiA ∈ SL2(R),

and hence Det(Mθi) = 1 = m1m4 − m2m3 = m1m4 − 0, so m4 = 1
m1

. Thus for
θi = θ1, π + θ1:

Mθi
=

(
m1 m2
0 1

m1

)
=

(
−a2−c2

c

)
Sin(θi) m2

0
(

−c
a2+c2

) (
1

Sin(θi)

)
However, Sin(π + θ1) = −Sin(θ1), which ensures m1 > 0 for exactly one of

the two cases θi = θ1, π + θ1. Thus, letting y = m−2
1 and x = m1m2 gives a

matrix in the required form.

Hence, in both the c = 0 and c ̸= 0 case, there exists a matrix in the coset
of A in the form y−1/2

(
1 x
0 y

)
.
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Furthermore, this is the unique matrix in the coset with that form, as left
multiplication of Mθi by Sθ for any θ ̸= 0, π gives a (2, 1)th entry not equal
to 0, while multiplication by Sπ gives a negative (1, 1)th entry. Thus the only
possibility for a product in the required form multiplication by S0, which is the
identity matrix

A consequence of Theorem 4.1 is that the coset space SO2(R) \ SL2(R) is
isomorphic with the upper half plane. For M ∈ SO2(R) \ SL2(R), M con-
tains a unique representative in the form from the statement of the theorem,
and identifying the coset with x + yi ∈ H defines an isomorphism. Because
the homothecy classes for lattices in R2 have been identified with the double
coset space SO2(R)\SL2(R)/GL2(Z), every homothecy class is associated with
multiple points in H via this isomorphism. These are referred to as complex rep-
resentations of the homothecy class, and given a complex representation x + yi,
y−1/2

(
1 x
0 y

)
is a generator matrix in the relevant homothecy class.

4.2 A Fundamental Domain of H
SL2(Z) is a subgroup of GL2(Z) which comprises integer valued 2x2 matrices
with determinant +1. Elements of SL2(Z) can be regarded as representing a
function acting on H as follows:

∀τ ∈ H, M =
(

a b
c d

)
∈ SL2(Z) : M(τ) = aτ + b

cτ + d

A number of important facts about SL2(Z) can be proved by basic complex
analysis. The proofs are omitted here.

Theorem 4.2.
∀τ ∈ H, M ∈ SL2(Z) : M(τ) ∈ H (1)

The proof of Theorem 4.2 relies on showing that if τ = x + yi with y > 0,
then for M ∈ SL2((Z)), with M(τ) = w + zi, z > 0. This theorem ensures that
M ∈ SL2(Z) is a map from H to H

Theorem 4.3.

S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
generate SL2(Z) (2)

Theorem 4.3 means that every M ∈ SL2(Z) can be expressed as a product
of powers of S and T .

The final key theorem for SL2(Z) is preceded by a definition.

Definition 4.1 (Fundamental Domain of H). F , the fundamental domain of
H is defined as follows:

F = {z = x + yi ∈ H : |z| =
√

x2 + y2 > 1 and |x| ≤ 1
2}
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Figure 4: F , the fundamental domain for H

F is represented graphically in Figure 4.

Theorem 4.4.

∀τ ∈ H : ∃M ∈ SL2(Z) such that M(τ) ∈ F (3)

With the above facts, it is possible to prove a theorem related to the complex
representations of homothecy classes which is vital to finding the densest lattice
packing.

Theorem 4.5. Every homothecy class has a complex number representative in
F .

Proof. Every member of H is a complex representation of some homothecy
class, and every homothecy class has multiple complex representations in H. By
Theorem 4.4, every complex representation can be mapped to F by a member
of SL2(Z). Therefore, if it can be shown that complex representations related
by SL2(Z) maps on H are homothetic, it then follows that every homothecy
class contains a representative whose complex representative is a member of F .

By Theorem 4.3, SL2(Z) is generated by S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
.

Thus if the maps associated with these two matrices do not change the homoth-
ecy class of a complex representative, then homothecy class does not change
when maps of SL2(Z) are applied.

Let τ = x+yi be a complex representative of a homothecy class Λ such that:

M = y1/2
(

1 x
0 y

)
∈ Λ

Now S(τ) = τ+1
1 = (x + 1) + yi is a complex representative of the lattice

with generator matrix:

y1/2
(

1 x + 1
0 y

)
= M.

(
1 1
0 1

)
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But then
(

1 1
0 1

)
∈ GL2(Z), and hence the lattice associated with S(τ) is

homothetic to that associated with τ . Hence applying the map on H associated
with S does not change the homothecy class of the complex representation.

Next consider T (τ) = −1
τ = −1

x+yi = −x+yi
x2+y2 . This is a complex representation

of the homothecy class that contains matrix:

N =
(

y

x2 + y2

)−1/2 {1 x
x2+y2

0 y
x2+y2

}
Now let θ be the angle between vectors ⟨1, 0⟩ and ⟨x, y⟩ so that Cos(θ) =
x√

x2+y2
and Sin(θ) = y√

x2+y2
. Then:

Sθ =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
∈ SO2(R)

And:
T =

(
0 −1
1 0

)
∈ GL2(Z)

Thus SθMT is homothetic to M and some simple matrix algebra shows
SθMT = N . Hence, applying the map on H associated with T also does not
change the homothecy class of the lattice represented. It therefore follows that
applying SL2(Z) maps to H does not change the homothecy class of complex
representations, and thus as F is a fundamental domain of H for SL2(Z), thus
every homothecy class has a representative in F .

The importance of Theorem 4.5 lies in the fact that given a lattice with
a complex representation in F , the minimum distance for the can easily be
identified. Minimum distance in turn plays a key role in determining the density
of the associated lattice packing.

4.3 Minimum Distance and Complex Representation
Remark 4.1. Minimum distance, m(Γ) of a lattice, Γ, is defined (see Definition
3.4) as

m(Γ) := {Min(|γ1 − γ2|)}γ1 ̸=γ2∈Γ

However, if Γ comprises all integer linear combination of the basis vectors
−→v1, ..., −→vn. Thus if γ1, γ2 ∈ Γ : m(Γ) = γ1 − γ2, then there exist x1, ..., xn ∈ Z

and y1, ..., yn ∈ Z such that γ1 = x1
−→v1 + ... + xn

−→vn and γ2 = y1
−→v1 + ... + yn

−→vn.
Hence:

m(Γ) = |(x1 − y1)−→v1 + ...(xn − yn)−→vn| = m(γ3) with γ3 ∈ Γ

Thus the minimum distance for a lattice as defined in Section 3 is equivalent to
the minimum Euclidean distance for a vector in Γ.
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Theorem 4.6. For a lattice, Γ, with complex representation x + yi ∈ F , the
minimum distance of Γ, m(Γ) is y−1/2

Proof. Note that for complex representation x + yi, the associated lattice has

generator matrix y−1/2
(

1 x
0 y

)
=

( 1√
y

x√
y

0 y

)
Now from the definition of a generator matrix, the lattice comprises all

integer linear combinations of the vectors 1√
y ⟨1, 0⟩ and 1√

y ⟨x, y⟩. Thus:

∀γ ∈ Γ : γ = m
√

y
⟨1, 0⟩ + n

√
y

⟨x, y⟩

where m, n ∈ Z.
Hence:

|γ|2 =
(

1
y

) (
(m + nx)2 + (ny)2)

=
(

1
y

) (
m2 + n2(x2 + y2) + 2mnx

)
However, if it is assumed x + yi ∈ F , then x2 + y2 ≥ 1 and so:

|γ|2 ≥
(

1
y

) (
m2 + n2 + 2mnx

)
Further x ∈ [− 1

2 , 1
2 ], so x > −1, and thus for mn ≥ 0:

m2 + n2 + 2mnx ≥ m2 + n2 + 2mn(−1) = (m − n)2

On the other hand, x < 1, so for mn ≤ 0:

m2 + n2 + 2mnx ≥ m2 + n2 + 2mn(1) = (m + n)2

Therefore in all cases there is an integer, k such that:

|γ|2 ≥
(

1
y

)
k2 ≥ 1

y

And so for all γ ∈ Γ, |γ| ≥ 1√
y . As |γ| = 1√

y for m = 1, n = 0, it follows by
Remark 4.1 that this is the minimum distance for Γ, m(Γ).

The minimum distance for a lattice with complex representation in F is
therefore maximized when y−1/2 is maximized, thus when y is minimized. The
minimum value of y in F is obtained at the points ± 1

2 +
√

3
2 i (see Figure 4),

giving a maximal minimum distance of:

m(Γ) =
√

2√
3
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A

B C

D

−→y

−→x

Figure 5: A lattice packing with basis vectors −→x and −→y . Angles A, B, C, D
sum to 2π.

4.4 The Hexagonal lattice packing
Figure 5 illustrates a lattice packing based on a lattice Γ with basis vectors
−→x , −→y ∈ R2. M , the 2x2 matrix with columns −→x and −→y is a generator matrix
for the lattice. R2 can be tiled with parellelograms with sides parallel to −→x
and −→y , each of which intersect with 4 of the circles in the 2 dimensional sphere
packing based on the lattice, as in Figure 5. The area of these parallelograms
is det(M), and as the angles of a parallelogram sum to 2π, therefore an area
equivalent to one of the component circles is covered by the packing in each
parallelogram. Hence the lattice packing density is given by the expression:

density =
π( m(Γ)

2 )2

det(M)
It has been shown that every lattice is homothetic to a lattice with complex

representation x + yi ∈ F , and the maximum minimum distance for a lattice
with complex representation in F is:

m(Γ) =
√

2√
3

Furthermore a lattice with complex representation x+yi has a generator matrix:

M = y−1/2
(

1 x
0 y

)
=

( 1
y1/2 x

0 y1/2

)
So det(M) = 1. Thus the maximum density for a lattice packing in R2 is:

π

2
√

3
≈ 0.9069
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This density is achieved by lattice with complex representation x + yi = ± 1
2 +

√
3

2 i, which corresponds to the lattice with basis vectors:

(√
3

2

)−1/2
1

0


(√

3
2

)−1/2
± 1

2√
3

2


or any constant multiple thereof by homothecy. This is the hexagonal lattice
packing, in which every circle in the packing is circumscribed by a hexagon (see
Figure 1.)

5 Theta Functions
5.1 Motivation and Definition
In the previous section the densest lattice packing in R2 was identified. How-
ever, the method by which this was achieved relied on several characteristics
specific to lattices in R2 and cannot be generalized easily to higher dimensions.
In particular, the method of finding the minimum distance was based on a re-
lationship between SO2(R) \ SL2(R) and the complex upper half plane which
clearly does not apply to matrices of dimension greater than 2. Finding the
minimum distance for a lattice in Rn for n > 2 is therefore key to solving the
sphere packing problem in higher dimensions. Theta functions are a method of
studying the distribution of lengths of vectors in a lattice and so can be applied
to the study of minimum distance of a lattice (by Remark 4.1) [Elk00]

Definition 5.1 (Theta function of a lattice). ΘΓ(z), the theta function of a
lattice, Γ is the generator function of the squared lengths of vectors in that
lattice. Thus:

ΘΓ(z) =
∑
x∈Γ

z(x,x)

For τ ∈ H, there are some nice identities for lattice theta function composed
with the function f(τ) = eπiτ . It is therefore useful to define a modified version
of the theta function, as follows:

Definition 5.2 (Modified Theta Function). For τ ∈ H and lattice Γ ⊂ R2,
define:

θΓ(τ) = ΘΓ(eπiτ ) =
∑
x∈Γ

eπi(x,x)τ
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5.2 Lattice Duals
Definition 5.3 (Dual of a Lattice). Given C ⊂ Rn, a lattice, the dual of C,
C∗, is the set of all vectors y ∈ R such that (y, x) ∈ Z for all x ∈ C

It can be shown that for any lattice Γ, Γ∗ is also a lattice and a generator
matrix for C∗ can easily be described given a generator matrix of Γ,

Theorem 5.1. Let Γ ∈ Rn be a lattice with generator matrix A. Then C∗ is
also a lattice in Rn with generator matrix (AT )−1 (the inverse of the transpose
of A).

Proof. Consider Γ ∈ Rn be a lattice with generator matrix A, and y ∈ Γ∗ ⊂ Rn.
Let the columns of A be −→a1, ..., −→an. It is clear that y is in Γ∗ if an only if y.−→ai ∈ Z

for i = 1, ..., n. Thus: y.−→a1
...

y.−→an

 = −→z ∈ Zn

But is is clear from matrix algebra that this means:

AT y = −→z

⇒ y = (AT )−1−→z
Hence Γ∗ comprises precisely those vectors in Rn which are integer linear

combinations of the columns of (AT )−1. But by definition this means C∗ is a
lattice with (AT )−1 a generator matrix.

The fact the dual of a lattice is itself a lattice is important for another
definition which is significant in discussion of lattices and their theta functions.

Definition 5.4 (Self Dual Lattice). A lattice Γ ∈ Rn is self dual if Γ∗ = Γ.

There is a simple consequence of this definition and Theorem 5.1 which is of
relevance later.

Theorem 5.2. For a self dual lattice with generator matrix A, Det(A) = ±1

Proof. By Theorem 5.1, for latice Γ with generator matrix A, the generator
matrix of Γ∗, the dual of Γ is (AT )−1. Thus if Γ is self dual, then by Theorem
3.1 there exists M ∈ GLn(Z) such that:

(AT )−1 = AM

But det(M) = 1, so:
det((AT )−1) = det(A)

Hence:
1

Det(AT ) = 1
Det(A) = Det(A)

But this implies Det(A) = ±1, as required.

15



It is not immediately obvious why self-dual lattices should be of particular
interest, given they appear to have a rather complicated defining property which
should not apply to more than a small fraction of all possible lattices. There are
two reasons why study of self dual lattices is useful. Firstly, many of the most
interesting and widely studied are in fact self dual. For example, the lattice in
Rn consisting of all points with integer coordinates - in some sense the proto-
typical example - is clearly self dual. The E8 lattice in eight dimensions is a
more complicated example of self duality which will be discussed further below.
Secondly the modified theta functions of self dual lattices have some particu-
larly nice properties which facilitate their study. Two particularly important
identities for self-dual lattices are the following:

Theorem 5.3 (Self Dual Lattice Identity 1). For self dual lattice Γ and τ ∈ H:

θΓ(τ + 2) = θΓ(τ)

Theorem 5.4. [Self Dual Lattice Identity 2] For self dual lattice Γ and τ ∈ H,
there exists an eighth root of unit, ϵg, such that:

θΓ

(
− 1

τ

)
= (ϵgτ1/2)nθΓ(τ)

The proof of Theorem 5.3 is simple. If Γ is self dual, then for all x ∈ Γ,
(x, x) is an integer. Then by definition 5.2:

θΓ(τ + 2) =
∑
x∈Γ

e(πi(x,x))(τ+2) =
∑
x∈Γ

e2πi(x,x)eπi(x,x)τ =
∑
x∈Γ

eπi(x,x)τ = θΓ(τ)

Theorem 5.4 is considerably more difficult to prove, and requires the applica-
tion of a result from Fourier analysis known as the Poisson Summation Formula
for Lattices.

5.3 The Poisson Summation Formula for Lattices
The Poisson Summation Formula for Lattices relates to the theory of Fourier
transforms.

Definition 5.5 (Fourier Transform). For an integrable function fRn → C, the
Fourier transform of f , f̂ is defined:

f̂(x) =
∫
Rn

f(t)e2πi(x,t)dt

In particular, for n = 1:

f̂(x) =
∫ ∞

−∞
f(t)e2πixtdt

The formulas discussed in this section to apply to a function f , it must be
a Schwartz function

16



Definition 5.6 (Schwarz Function). A function fRn → C is a Schwarz function
if it is infinitely differentiable (smooth) and if it exhibits rapid decay such that:

|f(x)| << |x|−N as x → ∞ for all N

The Poisson Summation Formula for Lattices relies on a simpler and more
familiar result - the Poisson Summation Formula for the Real Numbers.

Theorem 5.5 (Poisson Summation Formula for R). Let f : R → C be a Schwarz
function. Then: ∑

n∈Z

f(n) =
∑
n∈Z

f̂(n)

Proof. The proof of this theorem is based on lecture notes by Henri Darmon,
available online at https://www.math.mcgill.ca/darmon/courses/11-12/nt/
notes/lecture3.pdf. [DC11]

Consider Schwarz function f : R → C and let F (x) =
∑

n∈Z f(x + n).
Clearly F is periodic and can be expressed as a Fourier series expansion:

F (x) =
∑
m∈Z

ame2πimx

Where:
am =

∫ 1

0
F (x)e−2πimxdx

Thus by definition:

am =
∫ 1

0

∑
n∈Z

f(x+n)e−2πimxdx =
∑
n∈Z

∫ 1

0
f(x+n)e−2πimxdx =

∑
n∈Z

∫ 1

0
f(x+n)e2πimxdx

If t = x + n, then for all n ∈ Z e2πimx = e2πim(−n)e2πimt = (1)e2πimt, and
so:

am =
∑
n∈Z

∫ −n+1

−n

f(t)e2πimtdt =
∫ ∞

−∞
f(t)e2πimtdt

So, by Definition 5.5:

F (x) =
∑
m∈Z

ame2πimx =
∑
m∈Z

f̂(m)e2πimx

By definition, F (x) =
∑

m∈Z f(x + m), and so:∑
m∈Z

f(x + m) =
∑
m∈Z

f̂(m)e2πimx

The theorem follows by letting x = 0.
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Theorem 5.6 (Poisson Summation Formula for Lattices). Let f : Rn → C be
a Schwarz function and Γ ∈ Rn be a lattice with generator matrix A and dual
lattice Γ∗. Then: ∑

x∈Γ
f(x) = 1

det(A)
∑

x∈Γ∗

f̂(x)

Proof. The proof of this theorem is based on lecture notes by Michael Magee,
available online at https://gauss.math.yale.edu/˜mrm89/lecture7.pdf. [Mag16]

Let Γ ⊂ Rn be a lattice with generator matrix A such that the columns of
A are −→a1, ..., −→an. Let f : Rn → C be a Schwarz function. From the definition of
a lattice: ∑

x∈Γ
f(x) =

∑
m1∈Z

...
∑

m1∈Z

f(m1
−→a1, ..., mn

−→an)

For −→z = (m1, ..., mn) ∈ Zn, m1
−→a1 + ... + mn

−→an = A−→z , so that∑
x∈Γ

f(x) =
∑
−→z ∈Z

f ◦ A(−→z )

Theorem 5.5 can be applied n times which shows:∑
x∈Γ

f(x) =
∑
−→z ∈Z

̂f ◦ A(−→z )

From the definition of Fourier Transform:

̂f ◦ A(−→z ) =
∫
Rn

f(A(t))e2πi(z,t)dt

Letting u = A(t), the above integral is transformed to:

̂f ◦ A(−→z ) = (det(A))−1
∫
Rn

f(u)e2π(z,A−1u)du

Basic linear algebra can be used to show (−→v , M−→u ) = (MT −→v , −→u for −→u , −→v ∈
Rn and nxn matrix M. Thus:

̂f ◦ A(−→z ) = (det(A))−1
∫
Rn

f(u)e2π((A−1)T z,u)du

Again by basic linear algegra, (A−1)T = (AT )−1, so by Theorem 5.1, (A−1)T

is the generator matrix for Γ∗, the dual of Γ, from which it follows that:∑
−→z ∈Z

̂f ◦ A(−→z ) =
∑

x∈Γ∗

f̂(x)

And therefore: ∑
x∈Γ

f(x) =
∑

x∈Γ∗

f̂(x)
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The analytic conditions for f and f in Theorem 5.5 are automatically sat-
isfied by lattice theta functions. As a rigorous proof of this would require an
extended treatment of Fourier analysis this fact is assumed true here and The-
orem 5.5 is applied to theta functions.

5.4 Proof of Self Dual Lattice Identity 2
The proof of Theorem 5.4 requires two lemmas related to Fourier Transforms.

Lemma 5.1. For Schwarz function f : Rn → C, if k ̸= 0 ∈ R, then:

f̂(kx) = 1
kn

f̂
(x

k

)
Proof. Let f : Rn → C be a Schwarz function and g(x) = f(kx) and k ̸= 0:

f̂(kx) =
∫
Rn

f(kt)e2πi(x,t)dt

Letting u = kt and recalling that u and t are n-dimensional vectors, the
integral variable can be changed as follows:

f̂(kx) =
∫
Rn

(
1

kn

)
f(u)e2πi(x, u

k )du =
∫
Rn

(
1

kn

)
f(u)e2πi( x

k ,u)du

The lemma follows by Definition 5.5

Lemma 5.2. For function f : Rn → C such that f(x) = e−π(x,x), f̂(x) = f(x)

Proof. Let f(x) = f(x) = e−π(x,x). Then:

f̂(x) =
∫
Rn

e2πi(x,t)eπ(t,t)dt =
∫
Rn

e−π((t−ix)2+x2) = e−πx2
∫
Rn

e−π((t−ix)2

Note that if −→x = (x1, ..., xn) and −→
t = (t1, ..., tn), then:∫

Rn

e−π((t−ix)2
=

∫ ∞

−∞
...

∫ ∞

−∞
e−π(t1−ix1)2

...e−π(tb−ixn)2
dt1...dtn

So the lemma will be proved if it can be shown
∫ ∞

−∞ e−π(tk−ixk)2
dtk = 1 for

k = 1, ..., n. Letting z = tk − ixk. Rewriting the integral on the left hand side
of this equation gives:∫ ∞

−∞
e−π(tk−ixk)2

dtk =
∫
R+ixk

e−πz2
dz

Now, f(x) = e−πz2 is holomorphic, so by Cauchy’s integral theorem, the
integral of f(x) along any simple closed curve in C is 0. In particular, this
applies to the curve in red in Figure 6. Further, as M approaches infinity
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M−M

Im(z) = x

R

I

Figure 6: Cauchy’s Integral Theorem implies integral along the horizontal sec-
tions of the curve are equal.

in that figure, the intrgral of e−πz2 on the parts of the curve parallel to the
imaginary axis approach 0. From this it follows:∫

R+ixk

e−πz2
dz =

∫
R

e−πz2
dz

Hence the lemma will be proved if it can be shown
∫
R

e−πz2
dz = 1. But this

is true by the following calculation:∫
R

e−πz2
dz = 2

∫ ∞

0
e−πz2

dz

= 2

√∫ ∞

0
e−πu2du

∫ ∞

0
e−πw2dw

= 2

√∫ ∞

r=0

∫ π
2

θ=0
re−πr2dθdr

= 2

√
π

2

∫ ∞

r=0
re−πr2dr

Integrating using the substitution u = r2 shows:∫ ∞

r=0
re−πr2

dr = 1
2π

Thus
∫
R

e−πz2
dz = 1 and the lemma is proved.

With the two above lemmas and the Poisson summation formula for lattices
the proof of Theorem 5.4 is quite straightforward. For τ ∈ H, let fτ (x) =
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e−π(x,x)τ for x ∈ Rn. Then if Γ ∈ Rn is a lattice:

θΓ(τ) =
∑
x∈Γ

fτ (
√

−iτx)

By Theorem 5.6, if A is a generator matrix of Γ, and Γ∗ is the dual of Γ:

θΓ(τ) = 1
det(A)

∑
x∈Γ∗

f̂τ (
√

−iτx)

If Γ is self dual, then Γ = Γ∗ and so by Lemma 5.1:

θΓ(τ) = 1(√
−τi

)n
det(A)

∑
x∈Γ

f̂τ

(
x√
−iτ

)
By Theorem 5.2, det(A) = 1. Also, by Lemma 5.2, f̂(x) = f(x). Thus:(√

−i
√

τ
)n

θΓ(τ) =
∑
x∈Γ

fτ

(
x√
−iτ

)
Considering the right hand side of the equation:∑

x∈Γ
fτ

(
x√
−iτ

)
=

∑
x∈Γ

e−π(− 1
iτ )(x,x)

Because 1
i = −i, it follows:∑

x∈Γ
fτ

(
x√
−iτ

)
=

∑
x∈Γ

eπi( −1
τ )(x,x) = θΓ

(
−1
τ

)
Letting ϵg =

√
−i, an eighth root of unity, it therefore follows:

θΓ

(
−1
τ

)
=

(
ϵg

√
τ
)n

θΓ(τ)

which is Lemma 5.4

5.5 Modular Forms and Theta Functions
In section 4.3, the matrices in SL2(Z) were interpreted as maps acting on the
complex upper half plane H such that:

For M =
(

a b
c d

)
∈ SL2(Z) : M(τ) = aτ + b

cτ + d

In particular, λ1 =
(

1 2
0 1

)
correspondes to the map τ → τ + 2 and λ2 =(

0 −1
1 0

)
correspondes to the map τ → − 1

τ . Hence, from the identities stated
in Section 5.2 for a self-dual lattice Γ ⊂ Rn:

θΓ(λ1(τ)) = θ(τ) (4)
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and (for ϵg an eighth root of unity):

θΓ(λ2(τ)) = (ϵgτ1/2)nθ(τ) (5)

The matrices λ1 and λ2 generate a subgroup of SL2(Z), denoted Λ, which

comprises all matrices congruent mod 2 to either
(

1 0
0 1

)
or

(
0 1
1 0

)
. For

M =
(

a b
c d

)
∈ Λ, equations (4) and (5) imply:

θΓ(M(τ)) = (ϵg(cτ + d)1/2)nθΓ(τ) (6)

This result provides the link between lattice theta functions and modular
forms.

Definition 5.7 (Modular Form). [Coh18] A function f : H → C is a modular
form of level Λ (for Λ subgroup of SL2(Z)) and weight k if

1. For all M =
(

a b
c d

)
∈ Λ : f(M(τ)) = (cτ + d)kf(τ)

2. f is holomorphic on H

3. |f(τ)| remains bounded as Im(τ) → ∞

Points 2 and 3 of the definition above can be shown to hold for any theta
function. Considering Equation (6) for the theta function of a self dual lattice,
Γ ∈ Rn, as ϵg is an eighth root of unity, it is clear that if n is divisible by 8, then
θΓ is a modular form of level Λ and weight n

2 . One such lattice is E8, a lattice in
R8 comprising all points in Z8 ∪ (Z+ 1

2 )8 such that the sum of their coordinates
is even. E8 is described as an even lattice, meaning the squared Euclidean
length is an even integer for every member of the lattice. A consequence of
this is that θE8, is a ’classic’ modular form such that the functional equation
holds for all any M ∈ SL2(Z). This follows from the fact that for an even

lattice, if λ3 =
(

1 1
0 1

)
, then θΓ(λ3(τ)) = θΓ(τ), and λ2, λ3 are generators for

SL2(Z). E8 has 240 roots or minimal non-zero length vectors and thousands
of symmetries among its roots. Figure 7 is a reproduction of Peter McMullen’s
drawing of 2-dimensional representation of the E8 root system which captures
some of the symmetries.

This report began with a description of the sphere packing problem as a
motivation for the study of lattices, and it was shown in Section 4 how properties
of lattices can be exploited to identify a very dense packing in 2 dimensions
which is the optimal possible lattice packing for n = 2. The E8 lattice is also
intimately connected with sphere packing. The lattice packing associated with
E8 was long suspected to be the densest in 8 dimensions and this was proved by
Maryna Viazovska in 2017 (an achievement which led to the awarding of a Fields
Medal in 2022). [Via17] Remarkably, this was the same year of the publication of
the definitive proof of the optimal packing in 3 dimensions [Hal+17], a problem
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Figure 7: 2D representation of E8, from: https://aimath.org/E8/mcmullen.
html

which can be described more intuitively and might have been expected to have a
much simpler solution. This reflects in part the applicability of the mathematical
machinery of modular forms to the theta function of the E8 lattice.
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