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Abstract

Most of the conventional imaging systems used in a wide variety of applications like

biomedical imaging and material analysis can only record the intensity and/or phase

of light that has been scattered or emitted from the sample under observation. Hence,

some biological tissues and materials appear to be homogenous even when they may

possess some kind of internal structure. Polarisation-sensitive imaging is a form of

optical inspection that can reveal features in a sample that appear invisible to intensity

and/or phase detection systems. The complete effect of any optical element that mod-

ifies the state of polarisation can be represented as a 4×4 matrix (a Mueller matrix)

that acts as a linear operator on a Stokes vector. Prior to this work, these 16 Mueller

coefficients, which are in general linearly independent, have only been measured us-

ing two dimensional imaging techniques. All other 3-D polarisation-sensitive imaging

devices reported in the literature have only been able to obtain subsets of these 16 co-

efficients, leading sometimes to incomplete interpretations of polarisation dependent

features. We present here for the first time the combination of a depth resolved con-

focal imaging system with a complete Mueller matrix polarimeter. In other words, we

introduce for the first time a technique that can obtain complete-polarisation-sensitive

three-dimensional images which could reveal unknown anatomical condition of liv-

ing tissue that possesses polarisation-dependent signatures. The combination of these

two techniques resulted in other original contributions of this work. The first is that

due to the reflection configuration of the confocal microscope that is required for po-

larisation axial sectioning, a double-pass calibration method had to be implemented

and the necessary theory is described here. Secondly, we venture here on an attempt

to describe some features of the inverse problem concerning the disentanglement of

the measured complete Mueller matrices of contiguous axial positions. We also in-

dicate that the confocal sectioning of the system has a degrading effect, which may

not only affect Mueller matrix polarimetry measurements but also the performance of

previously reported incomplete-polarimeters. Lastly, we present experimentally mea-

sured depth-resolved complete-polarisation sensitive scans of non-biological samples

and how they compare to the forward simulation.
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1 Introduction: Polarisation

and the human eye

The visual system of a number of animals like bees, ants, some fish, and some verte-

brates can detect the polarisation of light; the human eye, on the contrary, is almost

polarisation-blind. Nonetheless, when light has an extremely high degree of linear

polarisation some people can perceive this with the naked eye. It turns out that we

may be able to see a small yellowish figure, called Haidinger’s brushes [1], which we

would not see when looking at non-polarised light. It has not been clarified yet what

is the origin of the Haidinger’s brushes, but it has been shown that some of the optical

elements of the human eye affect the state of polarisation of light [2, 3, 4]. It has also

been suggested that this is why, under some circumstances, optical polarisation effects

may be observed.

The ability of an individual to detect Haidinger’s brushes has been a useful and sensi-

tive indicator of compromised tissues in the macular region as well as other conditions

affecting the optical pathway for central vision [5]. The question of the precise po-

larisation mechanisms that take place in the human eye remains an interesting field of

study.

Although almost polarisation-blind, the human eye has been found to present consid-

erably strong birefringent properties. The cornea, for instance has been modeled as a

biaxial crystal with one of its optical axis (the fastest) perpendicular to its surface [3].

The retardation that has been reported, typically 1.92 rad for a double pass at the centre

of the cornea [3], is similar to a quarter of a wavelength. This makes the cornea the

component with the largest reported birefringence in the eye. The crystalline lens and

the retina possess a much lower birefringence than the cornea, however, it has been
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1. Introduction: Polarisation and the human eye

suggested that it is the retinal effect what causes the Haidinger’s brushes [6, 4]. And

in fact, it is the retinal birefringence that has been shown to be a useful parameter to

evaluate the health of the eye [7]. The thickness of the retinal fibre layer around the

optic nerve head has been estimated from the birefringence properties of the retina,

making it a possible useful tool in the early detection of glaucoma [7].

Recently, other applications have derived from the polarisation properties of the eye.

A very similar device to a pupil eye tracker has been designed that is based on the

birefringence of the fovea. Compared to more conventional eye trackers, the retinal

birefringence scanning technique can determine more accurately the direction of gaze

because it is based on foveal fixation [8]. An increase in contrast of deep retinal fea-

tures has been achieved by attempting a separation of polarised from non-polarised

light [9]. And also, polarisation-sensitive optical coherence tomography (OCT) has

been used to acquire depth resolved images of some polarisation properties of the

cornea and the retina [10].

The motivation of this Thesis was to develop a technique capable of obtaining depth

resolved complete polarisation sensitive images of the different components of the hu-

man eyein-vivo. The retinal structure and its relation to glaucoma was of special inter-

est. The rest of the optical elements, however, must not be overlooked; the retina is the

last component of the eye and the effect of the cornea and the lens needs to be removed

from the measurements obtained from the retina. A confocal Mueller matrix polarime-

ter was designed and built for the first time during this work. Only non-biological

samples were measured during this work, and more work is still necessary to achieve

the goal imposed by the original motivation. Nevertheless, the use of the technique

may not be limited to biomedical applications. Three-dimensional characterization of

the complete polarisation properties of materials can be achieved with the instrument

built. A large amount of work is still necessary to incorporate the technique into sys-

tems with higher numerical apertures, where the axial component of the electric vector

of the converging wavefront may become significant. High numerical aperture systems

may lead to complications in the reflection-type microscopes, but this might also allow

for the depth-sectioning polarisation-sensitive technique to be incorporated into trans-

mission microscopes. Additional work is still necessary regarding the solution of the

inverse problem which will be described in section 6.3. The reflection configuration of

the microscope imposed a calibration requirement that had not been addressed before

in the field of polarimetry: a double-pass calibration method was developed based on

the eigenvalue calibration method (ECM) by Compainet al. [11].

In the remaining part ofChapter 1, a review of the studies that have been motivated
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1. Introduction: Polarisation and the human eye

by the polarisation properties of the human eye is presented. Special attention is given

to the retinal section, where the ultimate motivation for this work resided. Polarisa-

tion effects originate from the structure of the individual eye components, and a short

description of the cornea, the lens and the retina is also included.

Chapter 2 contains a brief introduction to each of the two techniques combined during

this work: Mueller matrix polarimetry and confocal microscopy. Emphasis is placed

on the polarisation section, to introduce the notation used throughout the rest of this

Thesis. The basic Mueller matrices used in the mathematical models in this Thesis

are explicitly written, and a number of references that deal with polarisation sensitive

imaging are cited. In the last section a short description of confocal microscopy is

included, and the reader is pointed to some of the classic bibliography.

Chapter 3 describes, in detail, the Mueller matrix polarimeter designed and built dur-

ing this work. Two Pockels cells were used in the polarisation state generator (PSG),

and a division-of-amplitude-polarimeter (DOAP) was used as polarisation state anal-

yser (PSA). The experimental components and mathematical models of the PSG and

PSA are included as individual sections. One subsection is dedicated to the descrip-

tion of the implementation of the Pockels cells. The condition numbers of the PSG

and the PSA are shown, and so is the evaluation of the PSG using another two param-

eters that have been reported in the literature: the RAD and the EWV [12]. The last

section includes the details on how the PSG and the PSA were combined to obtain a

non-calibrated Mueller Matrix.

Chapter 4 is devoted to the double-pass eigenvalue calibration method (DP-ECM),

developed during this work as a modification of the original ECM by Compainet

al. [11]. The original ECM is described first and then DP-ECM is presented. The

choice of the calibration samples is explained in a subsection, and subsequently, a

useful particular case of the DP-ECM is described: the two-branch DP-ECM. The

repeatability and accuracy of the system was tested, and the results are presented in

the last section. The results of an evaluation of the time stability of the polarimeter are

also included.

Chapter 5 presents the axially-resolved experimental results of a mirror, scanned with

the confocal Mueller matrix polarimeter: a first time achievement. It also describes the

two versions of the confocal optics that were built during this work, and the character-

isation of the Mueller matrix axial response of the systems. At the end, the first exper-

iments on the effect of the confocal pinhole on the Mueller matrices are described.

Chapter 6 describes the central achievement of this Thesis. The first depth-resolved

complete polarisation sensitive measurements are presented there. A stack of glass
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1. Introduction: Polarisation and the human eye

plates and retarders was built, and the Mueller matrices at different depths within the

stack were measured. A forward simulation that quantitatively assessed the accuracy

of the measurements is included, and subsequently some features that may be encoun-

tered when working on the inverse problem derived from this work are outlined.

Chapter 7 contains the conclusions and the recollection of the ideas derived from this

work that may become topics for future research.

1.1 Cornea model

The human cornea can be divided into 5 layers from the outside inwards: epithelium,

Bowman’s membrane, stroma, Descemet’s membrane and endothelium. The major

layer is the stroma which makes up to 90% of the 0.5 mm total corneal thickness at

the central region [13]. The stroma is made of at least 200 layers 1.5 to 2.5µm thick

(lamellae); each lamella is made of parallel collagen fibres of 0.025 to 0.033µm di-

ameter. The collagen fibres have a refractive index of 1.55, and they are embedded

in a substance with a smaller refractive index equal to 1.35 [14]. This difference of

refractive indices produces form birefringence on each individual lamella, with a slow

axis perpendicular to the direction of the fibres within the lamella. However, this bire-

fringence is nearly zero across the whole cornea because the relative orientation of the

fibres of any two adjacent lamellae is more or less random [15].

The surface of the stroma may appear as an homogeneous medium for light that propa-

gates through its thickness, nevertheless, the random arrangement of the orientation of

the collagen fibres in different lamellae can induce another type of birefringence that is

equal to half the birefringence of an individual lamella, but with the slow axis perpen-

dicular to the stroma [15] (i. e. along the radius of curvature of the cornea). Evidence

of this effect was reported in 1861 by Valentin [16]; he found that when the cornea

was placedin-vitro between crossed polarisers, a dark cross intensity pattern could be

observed. It can be shown that a spherically shaped uniaxial crystal with its slow axis

in the radial direction produces such a dark cross, if it is placed between crossed linear

polarisers1 [14]. Experimentsin-vivo were published in 1941 by Cogan [18] describ-

ing exactly the same phenomenon. Stanworth and Naylor, in 1953 [15, 19], obtained a

value of 0.0014 for the birefringence of the isolated cat cornea; they also found that the

corneal retardance increased as the angle of incidence of the light augmented. They

1The shape of the crystal does not need to be spherical. A flat uniaxial crystal, with the face per-
pendicular to the optic axis, will produce the same effect when placed between crossed polarisers, if the
illumination beam is not collimated [17].
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1. Introduction: Polarisation and the human eye

concluded that the cat cornea behaves as a uniaxial crystal with the slow axis along the

direction of the radius of curvature of the cornea.

Long time later, in 1981, Bour and Lopez [20] used a subjective method to assess

the birefringence of the cornea. They determined the contrast on the retina of two

interfering laser beams entering the eye at different pupil positions. From the mea-

surements of the retardation between the two beams they calculated a birefringence

value of 0.0020 for the human cornea. Their results agreed with the value previously

reported by Stanworth and Naylor, and therefore they concluded that the cornea’s slow

axis is perpendicular to its surface.

A prominent piece of work was carried out by Van Blokland and Verhelst [3] in 1987.

They used Mueller matrix polarimetry to assess the change of the state of polarisation

of a beam of light that had made a double passage through the human eyein-vivo. They

showed that after a double pass, the values of the retardation over the pupil plane look

like a saddleback function: increasing at the superior and inferior parts of the pupil

plane, and decreasing in the temporal and nasal directions, as shown in Fig. 1.1.

Neglecting the retinal and lens birefringence effects, Van Blokland and Verhelst could

explain their results by modeling the cornea as a biaxial crystal. In their model, one

principal axis (the fastest) is always perpendicular to the cornea with a birefringence of

0.00159 with respect to a second axis which is oriented nasally downwards. The value

for the birefringence of the second principal axis was found to be 0.00014. Van Blok-

land and Verhelst proposed that the existence of the slow axis parallel to the corneal

surface could only be explained if there existed a preferential direction in the orienta-

tion of the collagen fibres of the stroma. They mention in their work that this interpre-

tation agrees with the experiments performed on small-angle scattering, by McCally

and Farrel [21], on isolated rabbit corneas.

In 2000, Greenfieldet al. [22] constructed a device to measure the orientation of the

corneal principal axis that is parallel to its surface. Based on an idea by Bone [23],

the device incorporated two crossed linear polarisers and a retarder. They illuminated

the eye with linearly polarised light and analysed the reflection from the back surface

of the crystalline lens (4th Purkinje image) with a polariser at an azimuth perpen-

dicular to the illumination beam. The retarder was used to decide whether the axis

found was a fast or a slow axis. Among 118 eyes of 63 subjects, only 6 eyes were re-

ported to demonstrate unmeasurable corneal birefringence. For the remaining 112 they

reported a mean corneal polarisation axis orientation of 24.8◦±21.4◦ nasally down-

wards, which agrees with the biaxial model of the cornea previously proposed by Van

Blokland and Verhelst. A graph with the results obtained by Greenfieldet al. is shown
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1. Introduction: Polarisation and the human eye

Figure 1.1:Amount of retardation and the eigenstates of a double passage through the ocular media
and scattering at the fundus. Values are displayed as a function of the exit pupil with a central entry.
Each measuring point is represented by a diamond. The orientation and ellipticity of the eigenstate are
given by the orientation and ratio of the short to the long axis of the diamond. Its handedness is given by
the sign. The lines indicate contours of equal retardation at intervals of 25◦. Figure and caption taken
from [3].

in Fig. 1.2.

The cornea is the most anterior surface of the eye, therefore, the characterization of

its polarisation properties is a crucial factor when studying the polarisation effects of

deeper structures inside the eye. When assessing lens and retinal polarisation charac-

teristicsin-vivo it will always be necessary to compensate for the large corneal retar-

dation, which may be different for each individual.

1.2 Lens contribution

The crystalline lens is formed by several layers of fibres. Structurally, the lens is

divided from the outside to the centre into capsule, epithelium and the lens substance

[13]. The diameter of the fibres in the cortex of the lens substance is 2µm, and
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1. Introduction: Polarisation and the human eye

Figure 1.2:Distribution of the corneal polarisation axis parallel to the surface of the cornea among
112 normal eyes. NU = nasally upwards; ND = nasally downwards. Taken from [22].

the fibres are arranged like the layers of an onion. From this kind of arrangement, a

measurable amount of form birefringence could be expected. In 1975, Bettelheim [2]

estimated theoretically that the form birefringence of the lens falls in the range between

0.002 and 0.00002, but also that the intrinsic birefringence of the lenticular fibres could

be of similar magnitude and opposite sign. Four years later, Weale [24] examined the

lenticular birefringence and reported values between−0.5×10−6 and−3.5×10−6,

which are very small compared to the cornea.

In 2001, Bueno and Campbell [25] concluded that the lens does not contribute substan-

tially to the total ocular retardation. They performedin-vitro Mueller-matrix imaging

polarimetry on 7 human crystalline lenses. They obtained a mean value for the lens

retardation of 4.3×10−6 at the central position.

1.3 Retinal polarisation properties

1.3.1 Structure of the retina

Since 1844, when Haidinger discovered the phenomenon of the perceptibility of po-

larised light by the human eye (Haidinger’s brushes), researchers have been attempting

to explain its origin. As reviewed by Hochheimer [26], some explanations would at-

12



1. Introduction: Polarisation and the human eye

tribute the Haidinger’s brushes to the corneal collagen arrangement, the lens structure,

or, more often, to either the radial symmetry of the Henle’s fibre layer or the dichroic

absorption of the yellow macular pigment. Results concerning these last two theories

are reviewed in the present section, but first a short description of the structure of the

retina is presented.

The human retina consists of several layers of different types of cells through which

the light must pass before reaching the photoreceptors layer. The retinal photoreceptors

layer (bacillary layer) is the penultimate layer reached by the light that had entered the

eye, after it has traversed another 8 distinguishable layers; see Fig. 1.3.

  10

Pigment epithelium

	 	 	 	 2a Outer segments
Bacillary layer (cones and rods)
	 	 	 	 2b Inner segments

Outer limiting membrane

	 	         4a Cone nuclei
Outer nuclear layer
	 	         4b Rod nuclei

	 	           5a Inner rod and cone fibres
	 	 	  (Henle fibres)
Outer plexiform layer	         
	 	           5b Rod spherules and
	 	 	  cone pedicles (synapsis)

Inner nuclear layer	          Bipolar cell nuclei

Inner plexiform layer	 	 Inner synaptic layer

Ganglion cells

Optic nerve cells

Inner limiting membrane

2

3

4

5

6

7

8

9

1

Figure 1.3:Cross section of the retina midway between the fovea and far periphery, adapted from
[27]. In the figure, light that had entered the human eye would travel from the bottom to the top of the
diagram.

On a plane perpendicular to the visual axis, the surface of the retina is divided into

two main zones: thefovea, in the center of the visual field, and theperiphery. The

central fovea (see Fig. 1.4) is a small depression on the retina caused by the radial

displacement of the layers 5 to 9 in the diagram of Fig. 1.3. In the foveal depression,

the receptors consist entirely of cones and are longer and thinner than elsewhere in

the retina: 70µm long and between 1µm and 1.5µm thick [13]. These last two main

characteristics make the most central part of the fovea the region with highest visual

acuity. From one edge to the other, the foveal depression is around 1500µm wide

(about 5◦ measured from the nodal point of the eye).

The second main region, the periphery, starts at around 5000µm from the foveal centre,

where the cone density falls to 12 cones per 100µm, and there are two rods between

each pair of cones. In the whole human retina there are approximately 7 million cones

13



1. Introduction: Polarisation and the human eye

Figure 1.4:Polyak’s illustration of the central fovea [28]. Note the disappearance of the inner layers
in the foveal centre. Light reaching the photoreceptors would travel from the bottom to the top of the
illustration.

and 75-150 million rods.

1.3.2 Retinal dichroism and birefringence (Haidinger’s brushes)

In 1978, Hochheimer [26] used a fundus camera with two crossed polarisers to photo-

graph the retina of anaesthetised rhesus monkeys. His photographs showed across-like

dark figure overlying the macular area which he related to the Haidinger’s brushes. If

the elements responsible for the macular cross pattern had been the cornea or the lens,

the position of the cross on the retina should have varied when changing the angle of

the entrance of the light. This was not found in the work realised by Hochheimer [26];

the macular cross always appeared in the same place around the central fovea. When

varying the wavelength from 400 to 745 nm, Hochheimer reported he could still dis-

tinguish theMaltese crosspattern centered at the fovea. However, he reported that at

765 nm and 830 nm wavelengths the pattern could no longer be seen. At first sight,

this latter result seemed to show that the macular polarisation effects observed were

produced by the dichroic absorption of the macular pigment, as it was once stated by

Devrieset al. [29] in 1953. However, according to Wald [30], the macular pigment

absorption is very small at wavelengths above 525 nm. Should the hypothesis of De-

vries et al. be true, no dichroic effect could be present at wavelengths over 525 nm.

Hence, Hochheimer’s work suggested that it is very unlikely that the absorption of the

macular pigment is the responsible for the macular dichroism. Hochheimer indicated

that the Henle’s nerve fibre layer has the faculty of exhibiting dichroism and that it has

the required radial symmetry over the macular area to produce the polarisation effects

he encountered which may ultimately be related to the Haidinger’s brushes.

During the same year, Shute [1] suggested a possible explanation for the cross pat-

tern photographed by Hochheimer, which opposes to the hypothesis of the Haidinger’s
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1. Introduction: Polarisation and the human eye

brushes being related to the Maltese cross. Shute argued that both perpendicular axes

of the cross pattern had been produced in the same way, and that they had been due to

the birefringence of the radial elements in the Macula lutea (Henle’s fibres). According

to Shute, using vertical linearly polarised light incident into the eye, such birefringence

would cause the reflected light from the macula to become elliptically polarised at the

directions where the Henle’s fibres make an angle of 45◦ with respect to the vertical

(azimuths: 45◦, 135◦, 225◦ and 315◦). Light reflected from these locations could thus

be able to pass through the horizontal analyser. The dark bars of the Maltese cross

would have been caused by the extinction of the linearly polarised light that retained

its vertical polarisation after it had been reflected from the regions where the Henle’s

fibres made an angle of 90◦ or 0◦. Shute stated that if this explanation was correct, the

Haidinger’s brushes could not be attributed to the radial symmetry of the Henle’s fibre

layer.

Devrieset al. [29] and Naylor and Stanworth [31] stated in the 1950’s that it is the

macular pigment dichroism what causes the Haidinger’s brushes. This hypothesis was

later supported by Bone[23] in 1980, who found a very close relation between the

spectral distributions of the optical density of the macula and the dichroic ratio of the

macular pigment (1.145 at 460 nm). From subjective measurements, he concluded that

both distributions have their origin in the retinal pigment and that the pigment must

consist of molecules possessing a preferential direction of absorption over the visible

spectrum.

Two years later, Hemenger [5] argued that form dichroism should be responsible for

at least a contribution to the Haidinger’s brushes. In 1982, Hemenger developed a

theory of form dichroism arising from the structure of the Henle’s fibre layer due to

the size, arrangement, and refractive index of the fibres, and the characteristics of the

surrounding medium. His model assumed no preferential orientation of the pigment

molecules. Hemenger supported his model on Hochheimer’s experiments, stating that

form dichroism is always accompanied by form birefringence and vice versa. Accord-

ing to Hemenger, if it was possible to measure the birefringence of the macula, it would

have been possible to determine whether the form dichroism was sufficiently large to

account for Haidinger’s brushes or not. He remarked that the visibility of Haidinger’s

brushes had been used clinically as an empirical indicator of the integrity of the mac-

ula, and therefore, if form dichroism was the correct explanation, any pathology that

might perturb the structure of the Henle’s fibre layer would be expected to reduce the

visibility of the brushes.

Bone and Landrum [32] gave new support for macular pigment hypothesis in 1984.
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They demonstrated the dichroic properties of lutein, the substance which is believed

to be part of the macular pigment, and showed that a bilipid membrane such as the

Henle’s fibre membrane, is capable of aligning lutein molecules in a way which would

result in the formation of Haidinger’s brushes.

In a meticulous paper from 1988 [6], Klein Brink and Van Blokland assessed the bire-

fringence of the human foveal areain-vivo using Mueller-matrix polarimetry, and at-

tributed the values they found only to the form birefringence of the Henle’s fiber layer.

The optical device used in this study, a PCSC’A Mueller matrix polarimeter, had been

previously described by Azzam [33] and then generalized by Hauge [34], 1978. The

polarimeter they built consisted of a light source, a linear polariser (P) and a rotatable

retarder (C) in the entrance optics (polarisation state generator: PSG), and a second

rotatable retarder (C’), a linear analyser (A) and a detector in the output arm (polari-

sation state analyser: PSA). Assuming radial symmetry in the macular region, Klein

Brink and Van Blokland irradiated 8 retinal fields on an annular area around the fovea.

They kept fixed the entry and the exit positions of the light on the cornea to separate

the retinal retardation contribution from the much larger corneal retardation. For each

of the 8 retinal fields, a Mueller matrix was found and the total retardation was calcu-

lated. The total measured retardation (corneal and retinal) was synthesised by a two

harmonics Fourier function of the azimuth angle of the 8 retinal fields, see Fig. 1.5.

Figure 1.5:Calculated retardation as a function of the azimuth in the retinal plane at an annular radius
of 2.9◦. The drawn curve is a best fitting Fourier synthesis. Figure and caption taken from [6].

Klein Brink and Van Blokland had expected a radially symmetric behaviour of the

retinal retardation. As a first approximation, they assumed that the cornea acted as
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1. Introduction: Polarisation and the human eye

a linear retarder with the slow axis pointing nasally downwards [3]. They expected

two pairs of azimuth directions for which extreme values of the total retardation would

exist: a pair when the slow axes of the cornea and retina were parallel, and a pair

when they were perpendicular to each other. Under this assumption, the retinal effect

should have manifested as a sinusoidal function of the azimuth angles, with a period of

180◦, of the irradiated fields along the circular annulus described on the retina. It was

indicated, however, that the corneal retardation component should not have remained

constant when varying the angle of incidence on the cornea, and it was shown that

this contributed to the total retardation as an oscillatory curve also with two maxima

and two minima. They hypothesised that these extreme values coincided with the two

extreme values of the retinal contribution, and therefore, the second harmonic of the

total retardation must have been either an addition or a subtraction of the retinal and

the corneal retardation. From the experimental data, Klein Brink and Van Blokland

concluded that the slow axes of the retina, in the periphery of the fovea were radially

arranged, and thus, that the absolute values of the retinal and corneal retardation need to

be subtracted to compute the magnitude of the total retinal retardation. In Fig. 1.6, the

final results of their work are reproduced for the different combinations of wavelength,

radius of the annular area, and retinal illuminance.

     Annular�� Illuminance�       Corrected Retardation�
 Radius (deg)�     level�      at 514 nm�     at 568 nm�
�
     1.25��      low��      13.6   1.2�     14.3   1.0�
���      high�      18.0   1.2�     17.1   1.1�
     2.90��      low��      11.7   1.0�     16.8   0.7�
���      high�      14.1   0.7�     19.8   1.6

+_
+_
+_
+_

+_
+_
+_
+_

Figure 1.6:Corrected values for the double-pass retinal retardation. Taken from [6]. The retardation
values are expressed in degrees, as they appear in the original publication.

Klein Brink and Van Blokland argued that the intrinsic birefringence produced by

the preferential orientation of the lutein molecules, suggested by Bone and Laundrum

[32], was probably very small due to a small concentration of preferentially arranged

molecules. They attributed the retinal retardation that they found to the Henle’s fiber

layer structure.

This has been the most widely accepted explanation of the retinal birefringence, how-

ever Klein Brink and Van Blokland’s work was based on the results of one single eye

[6]. Recently, in a study that used polarisation-sensitive optical coherence tomography

has been reported that the birefringence of the retina varies across the retinal surface
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1. Introduction: Polarisation and the human eye

[35]. This may compromise the validity of Klein Brink and Van Blokland’s results.

1.3.3 Preservation of polarisation and retardation of light reflected

from the retina

It has been shown by several authors [36, 37, 38, 39] that when light is reflected by the

retina a high degree of polarisation can be preserved. This can have an important role

in applications like fundus reflectometry [38] and measurements of the optical quality

of the eye.

In 1980, using a polariser-analyser optical system, Charman [36] measured the po-

larised portion of the light reflected from the retina, and reported that it decreased with

longer wavelengths. He stated that some polarisation changes were caused by the bire-

fringence of the cornea and the lens, and hence the portion of polarised light emergent

from the eye decreased as the pupil diameter increased. Gorrand [37], four years later,

measured the modulation depth of an interference pattern on a plane conjugate to the

retina, using linearly polarised light and several entry positions on the pupil plane.

Gorrand stated that the birefringence and the depolarisation due to the presence of op-

tically active material in the eye could have been the origin of the degradation of the

modulation depth of the interference pattern.

Both authors, Charman [36] and Gorrand [37], may have been led to erroneous inter-

pretations of their experimental results due to the incompleteness of their instruments;

these were simple polariser-analyser systems where elliptically polarised light can be

confused with partially polarised light. When no a-priori information of the polarisa-

tion properties of the samples is available a Mueller matrix instrument is often prefer-

able. Van Blokland, in 1985, measured the change in the degree of polarisation caused

by backscattering at the retina and double passage across the ocular media [39] using

a Mueller matrix polarimeter. Van Blokland’s results show that nearly 90% of the de-

gree of polarisation is preserved with some visible wavelengths. One year later, Van

Blokland and Van Norren [38] extended this work by taking measurements at 9 dif-

ferent exit pupils while varying four different parameters: the position of the entrance

pupil, the bleaching level (illuminance), the location on the retina, and the wavelength.

They concluded that the polarisation of light is largely preserved under almost all the

conditions tested, with the notable exception of red light (647 nm), see Fig. 1.7. Light

of longer wavelengths (red) come to a focus at a deeper layer inside the eye, where

the choroid, composed of layers of blood vessels, may produce a larger amount of

scattering. Furthermore, a larger spot size, produced by longer wavelengths, can also
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1. Introduction: Polarisation and the human eye

increase the proportion of scattered light that propagates back towards the measuring

instrument. This could have been why the degree of polarisation measured by Van

Blokland and Van Norren was significantly smaller when using red light.

Figure 1.7:Percentage of preservation of polarisation of light as a function of 9 different positions of
the exit pupil in a horizontal meridian. a) Results as a function of the position of the entrance pupil and
the state of the visual pigment; wavelength 514 nm, foveal fixation. b) Results of three different retinal
locations; 514 nm, visual pigment bleached, central entry. c) Comparison of results for three different
subjects; 514 nm, visual pigment bleached, central entry, foveal fixation. d) Results as a function of
wavelength; visual pigment bleached, central entry, foveal fixation. Figure and caption taken from [38].

A different region of the retina was studied with respect to polarisation effects in 1992.

Dreheret al. [40] measured local retardation changes in the periphery of the optic disc

(the peripapillary retina) to determine if the retinal nerve fibres (ganglion cells axons;

see Fig. 1.3) were also responsible for retinal birefringence. They employed a Mueller

matrix polarimeter to examine the spatially resolved retinal retardation at 200 locations

on a circular annulus around the optic nerve head. The experiments were performed

on 8 postmortem human eyes, from each of which the anterior segment (including

the cornea and the lens) was excised. Similarly to previous work [39, 38, 3, 6], the

device they used was based on Hauge’s [34] Mueller matrix polarimetry theory, but

this time they incorporated an automatic scanning unit to guide the measuring beam

to various locations on the retina. The device built by Dreheret al. was designed

to measure polarisation changes from a spot of light of 35µm focused on the retinal

plane, instead of the 1.5◦ field (890µm) measured previously by Van Blokland and

Van Norren [38]. Dreheret al. reported that at the wavelength of 632.8 nm between

50 % and 85 % of the light reflected from the retina was polarised. Additionally, they
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calculated the direction of the birefringence eigenvector as a function of the angular

measuring position, and indicated that the optic axis of the birefringent structure was

arranged with radial symmetry around the optic nerve head. Dreheret al. reported two

broad maxima in the retardation distribution around the optic nerve head that are shown

in Fig. 1.8. According to the authors, the locations of the maxima coincided with the

locations where the nerve fibre layer is thickest. The relative minima coincided with

locations of blood vessels.

Figure 1.8:Retardation values measured along the circle around the optic nerve head of a postmortem
human eye. Taken from [40].

In a subsequent study, Dreher and Reiter [7] assessed the thickness of the retinal fibre

layer around the optic nerve head from retardation measurements. In order to compen-

sate for the corneal birefringence, they used a mathematical corneal model to isolate

the polarisation effects of the retinal fibre layer. A trial and error algorithm varied the

amount of retardation and the orientation of the principal axis of the model cornea until

the best correlation was obtained between the calculated optic axis direction and the

expected radial arrangement of thecircumpapillarynerve fibres. With this algorithm

they estimated a corneal retardation value of 18◦ and a slow axis orientation of 15◦

nasally downwards [40]. Whereas the corneal optic axis direction agreed with previ-

ously reported results [3, 22], the central retardation of the cornea was significantly

less than what had been reported earlier by Van Blokland and Verhelst, 74.7◦ at 568nm

[6]. The absolute retardation values obtained in the living human eye retinas were

higher than those measured in postmortem eyes. Dreher and Reiter suggested that this

last difference might have been due to the tissue preparation of the postmortem eyes.

Dreher and Reiter’s work was the basis of a currently commercially available clinical

device, the GDx by Laser Diagnostic Technologies, Inc. This device estimates the

thickness of the retinal nerve fibre layer from measurements of the retinal retardation.

The instrument is an incomplete polarimeter that assumes constant birefringence over
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the retinal surface.

Another study that implemented Mueller matrix polarimetry, was reported by Bueno

and Artal in 1999 [41], and then by Bueno in 2000 [42]. A CCD camera was used

to record the Mueller matrix images of the pupil and retinal conjugate planesin-vivo.

Using two liquid-crystal variable retarders and two removable quarter wave plates,

Bueno and Artal built a Mueller matrix imaging polarimeter. Bueno and Artal also

studied how double pass estimates of the retinal image quality were affected by the

polarisation state of the light [43]. After calculating the Mueller-matrix of the eye,

they reconstructed the image of a point of light focused on the retina for different

states of polarisation of the incident light, and different configuration of the polarisa-

tion analysing optics. They concluded that the state of polarisation used in the incident

light of double pass technique did not affect significantly the quality of the first-pass

image on the retina. They also concluded , however, that when polarising elements

are placed in both the entrance and exit optics, incorrect estimates of the image quality

might be obtained [43].

The most recent developments in polarisation sensitive imaging of the eye have imple-

mented polarisation-sensitive optical coherence tomography systems (PS-OCT) [44,

45, 46, 10, 47, 48, 49, 50, 51]. This is an incomplete polarimetry technique with a

powerful depth sectioning capability. The results have been commonly stated in terms

of Stokes vectors and Mueller matrices, but the technique is only capable of assessing

the state of polarisation of the portion of light that is totally polarised. It is worth to

mention that these limitations do not occur in a confocal imaging system.

The backbone of this Ph.D. work is the development of a technique that can obtain

complete polarisation sensitive images of biological and non-biological samples at

different depths within the sample, of particular interest is the identification of non-

healthy conditions of the human eye. The exact origin of the polarisation effects

that occur in the human eye is still an important field of study. The depth resolu-

tion achieved with confocal microscopes on the living human eye (confocal ophthal-

moscopes) is not as good as that reported by OCT systems. For some applications a

better depth resolution may be preferable to a complete polarisation characterisation,

but surely, that is not always the case. A combination of the two techniques can also be

an alternative. Perhaps, further implementations of the technique developed here will

address that question.
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2 Mueller matrix polarimetry

and confocal microscopy

This chapter is not intended to be a comprehensive analysis of the two techniques that

were combined in this project. There is already an enormous amount of literature

that deals with that purpose and the reader will be referred to such when it becomes

necessary. For the sake of completeness, however, a brief review of the aspects of

each of these two techniques that are relevant to this work is presented in the following

sections. Two goals are pursued in this chapter. Firstly, for those readers who are not

familiar with either of the techniques, the basic concepts are presented; and secondly,

this exercise is an ideal starting point to introduce the notation that will be used in

the rest of this Thesis. Special attention should be given to the case of polarisation

of light, as there exist different notations that could give rise to inconsistencies in the

interpretation of the equations.

2.1 Mueller matrix polarimetry

The state of polarisation of a beam of light can be represented by four numbers that,

when grouped in a 4×1 vector, are known as the Stokes vector [52, 17, 53, 54], in-

troduced by G. G. Stokes in 1852. According to Shurcliff, the Stokes vector pro-

vides the simplest possible method of predicting the result of adding two incoherent

beams [52]. The Stokes vector can be defined in terms of the cartesian components

of the transverse electric field:Ex(r , t) andEy(r , t), and the relative phase difference:

δ = δy(r , t)− δx(r , t); or it can be defined in terms of measurable energy fluxes or
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2. Mueller matrix polarimetry and confocal microscopy

irradiances,IH,V,45,−45,R, andL
1.

S=


s0

s1

s2

s3

 =


< E2

x(r , t) > + < E2
y(r , t) >

< E2
x(r , t) >−< E2

y(r , t) >

2 < Ex(r , t)Ey(r , t)cos(δ (r , t)) >

2 < Ex(r , t)Ey(r , t)sin(δ (r , t)) >

 =


IH + IV
IH − IV

I45− I−45

IR− IL

 . (2.1)

For a fixed spatial positionr , the bracket< a>, in Eq. 2.1, represents the time average

of a over an interval of timeT that is long enough to make the time-average indepen-

dent ofT itself [53]. For an instantaneous snapshot of a wide beam of light, the bracket

may refer to the spatial average over the area covered by the beam.

When the Stokes vector is used to represent the state of polarisation of light, the linear

effect of an optical element on the state of polarisation is described by a 4× 4 real

valued matrix called the Mueller matrix of the sample [52]. The sample may be a

surface, a polarisation element, an optical system, or some other interaction which

produces a reflected, refracted, diffracted, or scattered light beam [54]. As can often

be found in the literature (e.g. [52, 53, 55, 54, 56]), the interaction of an optical element

with a Mueller matrixM can be represented by the left multiplication ofM times the

incident Stokes vectorSin.

Sout = M ·Sin. (2.2)

In this Thesis, capital boldface functions will represent Mueller matrices, unless oth-

erwise stated. The dot betweenM andSin in the previous equation indicates a matrix

product (row-column operation) and not an element-by-element product (dot product).

Throughout this Thesis, all products indicated by "·" represent matrix products if ma-

trices or vectors are involved. In matrix form, Eq. 2.2 can be written as
s0

s1

s2

s3


out

=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 ·


s0

s1

s2

s3


in

. (2.3)

Some authors prefer using zero sub-indices for the first elements of the Mueller matrix,

but the notation followed by Azzam [53] (mi j , with i, j=1,2,3,4) was adopted here.

1H = horizontal, V = vertical, 45 = diagonal at 45◦, -45 = diagonal at−45◦, R = right circular, and L
= left circular.
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2. Mueller matrix polarimetry and confocal microscopy

Other calculi have been developed for analysing polarisation; two worth mentioning

are the Jones calculus [53] and the coherence matrix calculus [56]. The Jones calculus

has some unique advantages. For instance, every normalised Jones matrix that can be

written down corresponds to a device that can be produced in the laboratory, and a

Jones matrix can be differentiated, to yield information as to the intensive properties of

the material of the optical element it represents [52]. The Jones calculus, however, is

only applicable if the incident beam is completely polarised, and if the optical elements

represented by the Jones matrices do not decrease the degree of polarisation of light.

Scattering samples cannot be represented using this formalism. The coherence matrix

calculus, as well as the Mueller calculus, can account for partially polarised incident

beams [55], nevertheless, the coherence matrix calculus is not applicable if the samples

represented are of depolarising type [53]. The propagation through depolarising optical

systems can be handled using the Mueller formalism, and it is the definition of the

Stokes vector in terms of irradiances (right part of Eq. 2.1) what makes the Mueller

calculus most generally suited for describing irradiance-measuring instruments [54];

for this reasons, it was the formalism chosen in this Thesis.

Not every 4× 4 real valued matrix is a Mueller matrix that can operate on a Stokes

vector as a real optical element that can be built in the laboratory or found in nature. A

good number of publications have dealt with finding valid criteria to test if a matrix is

a Mueller matrix; see for instance references [57, 58, 59, 54]. This subject falls beyond

the scope of this work, but it is important and must not be overlooked, specially during

the analysis and interpretation of experimental results. The results obtained during

this work are the first of their kind, and more work will be necessary for the solution

of the inverse problem derived from them (see section 6.3). The validity criteria of

Mueller matrices may play an important role within the research that may result after

this Thesis.

2.1.1 Basic Mueller matrices

The Mueller matrix of an optical element depends on the wavelength of the incident

beam, the angle of incidence, and the orientation of the sample. A Mueller matrix

specifies an optical element in a particular orientation; if the orientation of the optical

element changes, a different Mueller matrix must be used. For optical systems com-

posed by a sequence ofN polarising elements, the overall Mueller matrix of the system

can be found by multiplying the N individual Mueller matrices in the same order as
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2. Mueller matrix polarimetry and confocal microscopy

the corresponding optical elements appear in the system2.

Msystem= MN ·MN−1 · ... ·M2 ·M1. (2.4)

According to Shurcliff [52], the derivation of the Mueller matrices was based on ex-

periment and not from electromagnetic theory. Nevertheless, for every Jones matrix,

which may be derived from electromagnetic theory [53], there exists a correspond-

ing Mueller matrix [55]. The empirical nature of Mueller matrices makes them very

powerful in the laboratory, given that some of their elements can easily be related to

experimental measurements, even more when they are combined with the irradiance

definition of the Stokes vector (Eq. 2.1).

The simplest optical element that can be represented by a Mueller matrix is the empty

space, i.e. an element that does not affect the state of polarisation of light: the identity

matrix I4×4. A perfect reflector, at normal incidence, can be represented by a very

similar matrix but the last two elements on the diagonal should have negative sign. A

pure normal reflection does not alter the linear horizontal or vertical components of the

electric vector, but it does change the origin of the coordinate system with respect to

which the azimuth of the polarisation ellipse is defined [17] (i.e. the sign of the third

component of the Stokes vector). And it also changes the handedness3 of the circular

component of the polarised beam (i.e. the sign of the fourth component of the Stokes

vector).

The azimuth of a polarised beam of light is the angular position of the polarisation

ellipse’s major axis measured in a counterclockwise direction for an observer looking

into the source. The reference orientation is taken as the plane of incidence or scat-

tering, the horizontal position, or, conventionally, thex-axis [55, 53]. In this Thesis

azimuth values are always quoted in degrees, to avoid confusing them with retardance

values, which are quoted in radians or wavelengths.

The Mueller matrix of a perfect reflector is, therefore,

Mirror =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (2.5)

2Note that in Eq. 2.4 the matrix product must be performed from right to left, in the order the optical
elements would interact with a beam of light that first passes throughM1.

3The handedness of the ellipse of polarisation determines the sense in which the ellipse is described.
For an observer looking into the source, the polarisation is right handed if the ellipse is traversed in a
clockwise sense (i.e. when sin(δ (t)) > 0 in Eq. 2.1) [17].
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The Mueller matrices of most polarising optical elements can be easily found in the

literature. Some good examples are the publications by Shurcliff and Ballard [52];

Hauge, Muller, and Smith[55]; Azzam and Bashara [53]; and Chipman [54]. Mueller

matrices that may not be listed within those or other publications can often be calcu-

lated by adequate multiplication of basic Mueller matrices. In this work, for instance,

all the polarisation optical elements were ideally modeled by particular cases and ori-

entations of the linear-diattenuator linear-retarder matrix4:

P(τp,Ψ,∆) = τp ·


1 −cos2Ψ 0 0

−cos2Ψ 1 0 0

0 0 sin2Ψcos∆ sin2Ψsin∆
0 0 −sin2Ψsin∆ sin2Ψcos∆

 ; (2.6)

whereτp is the intensity transmittance (or reflectance) for non-polarised light,Ψ is an

auxiliary angle that depends on the relative amplitude diattenuation [17]

tanΨ =
√

τ‖
τ⊥

, (2.7)

and∆ is the retardance introduced by the optical element (e.g.δ in Eq. 2.1). The

signs in the definition ofP(τp,Ψ,∆) signify that the fast axis of the retarder within the

optical element coincides with the horizontal (x-axis) of the coordinate system, and

that the transmittance (or reflectance) is maximum for linear horizontally polarised

light and minimum for linear vertically polarised light. The eigenvalues (`1, `2, `3, `4)

of P(τp,Ψ,∆) can be calculated from the solution of the characteristic polynomial of

the matrix in Eq. 2.6.

`1 = 2τpsin2(Ψ), (2.8a)

`2 = 2τpcos2(Ψ); (2.8b)

`3 = τpsin(2Ψ)exp(i∆), (2.8c)

`4 = τpsin( 2Ψ)exp(−i∆). (2.8d)

The 0◦ azimuth orientation simplifies the calculations, however, the results do not de-

pend on the azimuth of the optical element. The relation between these eigenvalues

4Diattenuation is the material property of an optical element that exhibits different intensity trans-
mittance (or reflectance) for different states of polarisation.
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and the parametersτp, Ψ, and∆ is the standing point of the eigenvalue calibration

method [11] which will be described in section 4.1.

The Mueller matrix of an ideal linear polariser-analyser with transmittance for non-

polarised lightτ and azimuth at 0◦ degrees, for instance, can be derived from the

matrix P(τ,π/2,0). This type of element is so common and useful in the laboratory,

that its Mueller matrix will be explicitly named as

Pol(τ) = τ ·


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (2.9)

Similarly, an ideal linear retarder that introduces a relative phase shift of∆ radians (∆2π

wavelengths), with the fast axis oriented at an azimuth angle of 0◦ and transmittanceτ

(P(τ,π/4,∆)), will be called

Ret(τ,∆) = τ ·


1 0 0 0

0 1 0 0

0 0 cos∆ sin∆
0 0 −sin∆ cos∆

 . (2.10)

Using the last three matrices, Eqs. 2.6, 2.9, and 2.10, it was possible to model all the

polarisation optics implemented in the experimental part of this Thesis: Glan-Taylor

polariser, Pockels cells, wave-plates, dichroic polariser and analysers, polarising beam-

splitters, non-polarising beamsplitters and mirrors. The azimuth orientations of the

optical elements were introduced by using two matrices that operate as rotators of the

Stokes vector in space. Different author prefer different notations of the rotation ma-

trix. The one chosen here was

Rot(θ) =


1 0 0 0

0 cos2(θ π

180◦ ) −sin2(θ π

180◦ ) 0

0 sin2(θ π

180◦ ) cos2(θ π

180◦ ) 0

0 0 0 1

 , (2.11)

whereθ is the azimuth (in degrees) by which the matrixRot(θ) rotates the Stokes

Vector. With this simple definition, if the Mueller matrix of an optical element is

known at an azimuth of 0◦, MM 0◦, then the Mueller matrix of the same optical element

at an azimuthθ will be given by
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MM θ = Rot(θ) ·MM 0◦ ·Rot(−θ). (2.12)

The rotation matrix of Eq. 2.11, can also be related to the Mueller matrix of an op-

tically active material, that is, a material that exhibits circular retardance. This type

of elements were not used as part of the instrument built in this work, however, the

system was capable of measuring such type of matrices. A right-circular retarder5 of

retardance∆c induces an equivalent rotation ofθ =−∆c
2

180
π

degrees.

CircRetright(∆c) =


1 0 0 0

0 cos∆c sin∆c 0

0 −sin∆c cos∆c 0

0 0 0 1

 (2.13)

Similarly, a left-circular retarder of retardance∆ induces a rotation ofθ = ∆c
2

180
π

de-

grees.

One of the most important advantages of the Mueller calculus over other formalisms is

that it can be applied to depolarising samples. Imaging biological tissue has been the

principal motivation for this work, therefore, it is expected that the technique developed

here will be applied on samples that exhibit some depolarisation, for instance due to

scattering. The Mueller matrix of a pure depolariser is given by

Depol(a,b,c) =


1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c

 ; |a|, |b|, |c| ≤ 1. (2.14)

As for a circular retarder, a complete Mueller matrix polarimeter, like the one devel-

oped here, could measure the Mueller matrix of a depolarising element. In fact, it

could measure the complete Mueller matrix of any sample from which a signal may be

recorded.

An insightful and rather general review of the role of each Mueller matrix coefficient

was published by Lu and Chipman in 1996 [60]. Other reviews can also be found in

the literature; see, for instance, references [52], [54], and [53], where the definitions of

the different properties of a Mueller matrix can be found.

5In a right-circular retarder the right-circular component is faster than the left-circular.
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2. Mueller matrix polarimetry and confocal microscopy

2.1.2 Polarimetry

The science of measuring the state of polarisation of a beam of light, or the polarisation

properties of a sample, is called polarimetry or ellipsometry, depending on the author

[53]. Ellipsometry is commonly associated with the measurement of only the ellipso-

metric angles of a beam [17], therefore, the term polarimetry was adopted during this

work for referring to the more general case.

In the laboratory, a Mueller matrix can be measured using many different systems. All

of them should have two parts in common: a polarisation state generator (PSG) and

a polarisation state analyser (PSA) [61]. Light with different known states of polari-

sation needs to be generated, with the PSG, to probe the sample. After the light has

interacted with the sample to be characterized, the resulting Stokes vector should be

measured with the PSA. A minimum of four intensity measurements are required to

determine the Stokes vector of a beam, and a minimum of 16 are required to obtain

a complete Mueller matrix. For these two cases, the measurements need to be lin-

early independent in the domain of the Stokes vector space. If the required number of

linearly independent measurements is not reached the characterization of the Stokes

vector, or the Mueller matrix, will be incomplete6.

Different methods have been used to configure the PSG and PSA of Mueller matrix

polarimeters: rotating wave plates [33, 34, 38, 62, 63], optical rotators [64, 65], Pock-

els cells [66, 67, 68, 69, 70], photoelastic phase modulators [71, 69], and liquid crystal

variable retarders [72, 73, 74], among others. Also, several types of a useful PSA, the

division of amplitude polarimeter (DOAP)[75], have been designed that use polaris-

ing beamsplitters [75, 76], windowless planar-diffused Si photodiodes [77], a dielec-

tric parallel slab with metallic a coated surface [78], and uncoated prisms [79].With a

DOAP, all the intensity measurement required to calculate the Stokes vector of a beam

can be taken simultaneously. This increases acquisition rate of the system, sometimes

at the cost of lower signal to noise ratios.

The Mueller matrix polarimeter built during this work was similar to the one imple-

mented by Françoise Delplancke [67]. It used two Pockels cells as linear variable

retarders in the PSG, and a DOAP with non-polarising beamsplitters for the PSA. The

details will be presented in chapter 3. This type of instrument can, in principle, obtain

measurements at very high frequencies. The typical rise time of a Pockels cell is of

the order of 1 ns, and the DOAP is only limited by the speed at which the signal on

6When only some polarisation properties need to be investigated, incomplete polarimetry can be
advantageous over complete polarimetry since the complexity of the measuring instrument can often be
reduced.
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2. Mueller matrix polarimetry and confocal microscopy

each photodetector can be recorded. There are no moving parts in this type of de-

sign, which simplifies its assembly and helps to make the calibration robust, provided

other changes, like the dependance of the Pockels cell retardances on temperature, are

well corrected. The possibility of obtaining Mueller matrices at high acquisition rates,

makes this type of polarimeter suitable for inspecting a samplein-vivo at different

spatial positions.

Polarisation sensitive imaging

Obtaining the polarisation properties of a sample at different locations within the

sample is known in the literature as polarisation sensitive imaging [63], regardless

of whether the polarimetry is complete or incomplete. Prior to this work, complete

Mueller matrix polarimetry had only been combined with two-dimensional imaging

techniques [63, 80, 81]. The three-dimensional polarisation sensitive systems that

have been reported had only been able to measure an incomplete set of the polar-

isation parameters. Some of these systems used confocal polarisation microscopes

[82, 83, 84, 85, 86], differential polarisation imaging [87], and polarisation-sensitive

optical coherence tomography [44, 45, 46, 10, 47, 48, 49, 50, 51].

The confocal Mueller matrix polarimeter built in this work is the first instrument capa-

ble of measuring the complete Mueller matrices of a sample at points spatially resolved

in three dimensions. The depth resolution of the Mueller matrix polarimeter built here

is what makes the technique unique. When noa-priori information can be obtained

about the polarisation properties of a sample, the measurement of the complete polar-

isation information becomes necessary to characterize it. Optical coherence tomogra-

phy is a very powerful three-dimensional imaging technique, but its principle of oper-

ation impedes the acquisition of the depolarisation information of the sample. For the

sake of not compromising the polarimetry measurements, a confocal microscope was

chosen in this work to achieve the depth resolution necessary for three-dimensional

imaging.

2.2 Confocal Microscopy

The most important feature of a confocal imaging system is that it can select the optical

axial position of the object, or within the observed object, from which an image is

to be produced, by obstructing almost all the light that is being reflected, emitted,

scattered, or diffracted from all other axial positions. In a confocal microscope two
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2. Mueller matrix polarimetry and confocal microscopy

lenses are used, one for illuminating a small portion of the sample with a spot of

light (an image of a point light source), and one for collecting the light that has been

scattered from the illuminated spot of the sample. This type of illumination enhances

the signal that returns to the system from the position of interest, with respect to the

signal propagating from the surrounding region. The light returning from the sample

is re-imaged to form a small spot by the collector lens, or with the aid of an additional

lens, onto a plane where a small aperture is placed: a pinhole that can obstruct the

light that has been scattered from other positions than the position of interest. The

pinhole is a conjugate of the small portion illuminated in the sample, and also of the

point light source. If the pinhole is sufficiently small, even the light propagating form

axial positions closely separated from the axial position of the illuminated spot can

be obstructed. To produce an image of the specimen, the illuminated region can be

changed by moving the sample and keeping the system fixed, or by scanning the spot

of light and maintaining the pinhole always conjugated to the position illuminated with

the small light spot.

According to Inoué [88], the confocal microscope was invented in 1957 by Marvin

Minsky. Since then, although not regularly, a large number of publications have been

released that study its theory and practice. Two valuable concise resources are the

book by Tony Wilson and Colin Sheppard [89], and theHandbook of Biological Con-

focal Microscopyedited by James B. Pawley [90]. Both texts include theoretical and

practical aspects of confocal microscopy.

The theory of confocal microscopes is often based on the use of an infinitesimally

small pinhole on the detection end of the system. In practice, this can be achieved by

using a single-mode optical fibre as a coherent detector, but sometimes it is not pos-

sible and finite size pinholes are used. In many cases the size of the pinhole needs to

be rather large due to signal-to-noise limitations [91]. Large area (non ideal) detec-

tion deteriorates the axial resolution of the microscope and the coherent nature of the

confocal detection [89].

In the laboratory, the design of of a confocal microscope is often driven by the specific

requirements of each application. In the human eye, for instance, the irradiance levels

must not compromise the integrity of the ocular tissue and must comply with the max-

imum permissible exposure (MPE) limits established [92]. The light that returns from

the eye is only a small fraction of the light used for illumination [93] and the low light

levels can affect the speed of the measurements, the pinhole size of the microscope

(i.e. the lateral and axial resolution), the signal to noise ratio, and also the cost of the

instrument.
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2. Mueller matrix polarimetry and confocal microscopy

The confocal microscope built in this work was designed using a very simple con-

figuration. The goal of this project was to examine the feasibility of combining the

confocal microscope with Mueller matrix polarimetry, hence, the simplest approach

was obviously preferred. For applications of the combined technique, more specific

designs will be necessary. For example, a fast scanning unit will be required to obtain

three-dimensional images of the human eyein-vivo to eliminate the artefacts of the

movements of the eye. And adaptive optics compensation of the ocular aberrations

will be necessary to ensure a significant depth resolution of the system at the retina.
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3 Experimental setup I:

Mueller matrix polarimeter

In this Thesis a confocal microscope was built within a complete Mueller matrix po-

larimeter. In order to study the experimental accuracy of the polarimetry measure-

ments of the combined system, the polarimeter needed to be characterized before the

confocal optics were introduced in the device. As mentioned in section 2.1, there are

several ways to measure a Mueller matrix of a sample; in this chapter the implemented

polarimetry technique is described, and also results that show its accuracy and repeata-

bility are presented.

The Mueller matrix polarimeter we built was based on that implemented by Françoise

Delplancke in 1997 [67]. Two electro-optical modulators (Pockels cells) were used

to define the state of polarisation of the light incident on the sample and a Division of

Amplitude Polarimeter (DOAP) measured the state of polarisation of the light scattered

from the sample for each probing state of polarisation. Significant modifications were

made to Delplancke’s original design. These differences include the type of voltage

modulation applied to each Pockels cell, the configuration of the four detectors of the

DOAP, and most importantly, the double-pass reflection configuration of the system

that is required to obtain depth-resolved complete polarisation sensitive images. These

differences, which constitute a part of the original work that is presented in this chapter,

will be explicitly stated when necessary throughout the following sections.

First, in section 3.1, the polarisation state generator (PSG) is described, followed by a

brief evaluation of its theoretical performance, and a subsection on the implementation

of the Pockels cells. Subsequently, the polarisation state analyser (PSA) is presented

in section 3.2, and finally, the combination of the two parts of the system towards ob-
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3. Experimental setup I: Mueller matrix polarimeter

taining a non-calibrated Mueller matrix is described in the last section. The calibration

of the system constitutes the next chapter.

3.1 Polarisation State Generator: PSG

A 1:10 scale diagram of the PSG branch is shown in Fig. 3.1. Light was generated with

a 532 nm frequency-doubled diode-pumped solid state laser (Melles Griot 58 GCS).

The nominal output power of the laser was 5 mW, but a 0.8 O.D. neutral density filter

ensured a working beam power of less than 1 mW. An iris diaphragm (Iris 1) placed

after the filter served as reference for aligning the subsequent components and also

to block spurious back reflections. Neutral density filters of between 0.6 and 1 O.D.

mounted on a filter wheel were used to regulate the intensity incident on the sample

and to avoid saturation of the photodetectors. Mirror M1 then bent the optical path to

make the system fit on the optical table. The emitted light from the laser is specified by

the manufacturer as linearly polarised vertical to the base of plate±5◦. By placing a

Glan-Taylor polarising prism after the mirror M1 it was possible to set the polarisation

reference azimuth angle to 90◦ with better precision; it was easier to rotate the prism

than the laser. The azimuth orientation of the prism was then used as reference angle

for all the polarising elements. The Glan-Taylor also ensured an initial high degree of

polarisation purity given that the specified extinction ratio for this prism (Melles Griot

03PTA401) was better than 10−5.

Linear vertically polarised light that emerged from the Glan-Taylor prism passed through

two electro-optical modulators (transverse Linos LM0202 Pockels cells) that acted as

linear variable retarders. The fast-axis of the first and the second Pockels cells were

aligned at 45◦ and 0◦ respectively. The birefringence of the Pockels cells can be mod-

ulated by applying a varying voltage across the direction of propagation of light, but

the details will be explained later in this section. A second diaphragm (Iris 2), which

was placed after the Pockels 2, was used as an aligning tool for the spatial filter and the

beamsplitter in front of the sample. For the nominal laser beam diameter of 1.1 mm,

the spatial filter consisted of a 15.5 mm focal length microscope objective1 (Linos

038722) and a 20µm pinhole2. The last two elements of the PSG were a 200 mm fo-

cal length collimating doublet lens and a circular aperture that defined the stop surface

1The N.A. of the spatial filter was 0.035, and the nominal Airy disc diameter at the pinhole plane
was 18.5µm.

2The pinhole size was equivalent to 4.2 optical units (o.u.). This was calculated usingvp = 2π

λ
NArp,

whereNA is the numerical aperture andrp is the real pinhole radius.
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Laser

ND Filter 1

Iris 1

ND Filter wheel

Glan-Taylor Iris 2 Spatial Filter L1

Stop

Obj 3

Ph
Obj2

Bs1
Obj1

sample

Bs3

Bs2

P45

Qwp P0

PBs4

D1

D2

D3

D4

M2
M1

Pockel's 1 Pockel's 2

Figure 3.1:Schematic diagram of the experimental PSG within the confocal polarimeter (scale 1:10).
M1: Mirror, Glan-Taylor: Polarising prism with axis at 90◦, Pockels 1: Electro-optical modulator with
the fast axis at 45◦, Pockels 2: Electro-optical modulator with the fast axis at 0◦, L1: Collimating doublet
lens. Faded area covers the polarisation state analyser and the confocal optics; they are described in
section 3.2 and chapter 5 respectively.

of the whole optical system. The diameter of this circular aperture was never larger

than 10 mm, and it selected only a small part at the centre of the collimated beam.

For this reason, the illumination was assumed to be uniform across the aperture of the

system.

3.1.1 Mathematical modeling of the PSG

The state of polarisation of light incident on the sample was modulated using two

electro-optical modulators that behaved as linear variable retarders. If the retardance

of a linear retarder with the fast axis at 0◦ is a function of time∆(t), then Eq. 2.10

becomes

Ret(τ,∆(t)) = τ ·


1 0 0 0

0 1 0 0

0 0 cos∆(t) sin∆(t)
0 0 −sin∆(t) cos∆(t)

 . (3.1)

According to Eq. 2.11 the Mueller matrix of a linear variable retarder with the fast axis
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3. Experimental setup I: Mueller matrix polarimeter

oriented at an azimuth angleθ must be

Ret(τ,∆(t),θ) = τ ·Rot(θ) ·


1 0 0 0

0 1 0 0

0 0 cos∆(t) sin∆(t)
0 0 −sin∆(t) cos∆(t)

 ·Rot(−θ). (3.2)

Assuming that the two Pockels cells behave as perfect linear variable retarders, their

Mueller matrices can be found by substituting the adequate parametersτ, ∆(t) andθ

in Eq. 3.2 for each of them. The fast axis of the first Pockels cell was oriented at 45◦

and the second was aligned at 0◦. This combination of angles warrants access to all the

states of polarisation on the Poincaré sphere, provided one retardance varies within a

π radians interval and the other within a 2π radians interval. The transmittance of both

modulators was modelled as unity. This assumption is entirely adequate given that the

intensity of the light incident on the sample was the reference intensity to determine

the transmittance of the sample. It is easy to see that the Mueller matrices for the two

Pockels cells were

Pock1(∆1(t)) = Ret(1,∆1(t),π/4) =


1 0 0 0

0 cos∆1(t) 0 −sin∆1(t)
0 0 1 0

0 sin∆1(t) 0 cos∆1(t)

 , (3.3a)

Pock2(∆2(t)) = Ret(1,∆2(t),0) =


1 0 0 0

0 1 0 0

0 0 cos∆2(t) sin∆2(t)
0 0 −sin∆2(t) cos∆2(t)

 . (3.3b)

The two Pockels cells were combined successively to modulate the state of polarisation

of light that started as linear vertically polarised (90◦) after passing through the Glan-

Taylor prism:
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3. Experimental setup I: Mueller matrix polarimeter

S90◦ =


1

−1

0

0

 . (3.4)

Combining Eqs. 3.3 and 3.4, the light that passed through the PSG, as is depicted in

Fig. 3.2, resulted in

SPSG(t) =


1

−cos∆1(t)
−sin∆1(t)sin∆2(t)
−sin∆1(t)cos∆2(t)

 = Pock2(∆2(t)) ·Pock1(∆1(t)) ·S90◦. (3.5)

Glan-Taylor

Pockel's 1 Pockel's 2

Laser

P/90

L1

Pockel's cell 2

Pockel's cell 1

Spatial filer"P/φ" - Polariser at φ degrees

Qwp/45- Quarter waveplate at 45 degrees

Bs - Non-polarising beam splitter

PBs - Polarising beam splitter

L - Lens

D - Photodetector
Glan-Taylor 90o

Pockel's 1
45o

Light direction

Pockel's 2
0o

Figure 3.2:Polarising elements of the PSG which defineSPSG(t).

The choice of the modulation parameters for the retardances∆1(t) and∆2(t) ensured

that at least 4 linearly independent states of polarisation were generated to obtain a

complete polarimetry measurement. The bottom three elements of the Stokes vec-

tor SPSG(t) in equation 3.5 can be interpreted as a transformation from spherical to

rectangular coordinates of points on the surface of the Poincaré sphere. For a vector

(s1,s2,s3)T in rectangular coordinates, with its endpoint on the surface of the sphere,

∆1(t) represents the angle of the vector to the negative horizontal axis (−S1), and∆2(t)
is the angle between the projection of the vector onto the plane perpendicular to S1 and

the negative diagonal axis (−S2) as it is shown in Fig. 3.3.

With this in mind, it is evident that with∆1(t) contained within an interval of length

π, and∆2(t) within an interval of length 2π, any state of polarisation on the surface of

the sphere could be generated.

One way to generate a complete set of incident states of polarisation with this PSG

configuration was by setting the values of the retardances to
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S1

SPSG(t)

S2
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∆1(t)

∆2(t)

Figure 3.3:Parametric representation of the states of polarisation within the span of the PSG as a
function of the time depending retardances∆1 and∆2 of equation 3.5. Note that if∆1(t) ∈ [0,π), and
∆2(t) ∈ [−π,π) any point on the surface on the Poincaré sphere can be addressed.

∆1(t) = 2ω0t−
3π

2
, (3.6a)

∆2(t) = ω0t−
3π

2
, (3.6b)

where the slopeω0 defined the angular frequency of the modulated set of states of

polarisation. Clearly, from Eq. 3.5, the generated states of polarisation were repeated

every T0 = 2π/ω0 time units. The main advantage of this type of modulation is that,

with the polarisation state analyser (PSA) used in our setup, the elements of the Mueller

matrix to be measured were simply linear functions of a finite known set of Fourier

coefficients of the detected intensity signals, and this will be shown in section 3.2. In

Delplancke’s PSG [67] the retardances produced with the Pockels cells were sinusoidal

functions, disadvantageously relating the Mueller matrix elements to an infinite set of

harmonics to be detected, and therefore neglecting the high frequency terms.

The periodicity of the sine and cosine functions in Eq. 3.5 permits emulation of the

monotonically increasing retardances by using sawtooth functions. In practice, the

time varying voltage signals applied to the Pockels cells were sawtooth functions that

induced the sawtooth retardances

∆1(t) = 4πfrac(
2t
T0

)− 3π

2
, (3.7a)

∆2(t) = 2πfrac(
t
T0

)− 3π

2
; (3.7b)

frac(x) stands for the fractional part ofx, and as mentioned previously, T0 is the period
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of the modulation for the first Pockels cell.

A graphic of one cycle of the sawtooth signals used in the experiment is shown in Fig.

3.43. The corresponding states of polarisation (SPSG(t)) that were generated are shown

as vector endpoints on the Poincaré sphere. A full cycle consisted of a sequence of 256

different states of polarisation which are represented by the blue dots on the Poincaré

sphere in Fig. 3.4(b). The blue arrow indicates the direction of the modulation as

time progressed, and the green dot behind that arrow corresponds to timet = 0, that

is,{∆1(0),∆2(0)}= {−3π

2 , −3π

2 }, when linearly polarised light at−45◦ was generated.

The rest of the individual green dots on the sphere also correspond to a vertical pair

of green dots on Fig. 3.4(a). For example, at 0.8 ms, the retardances induced by

the Pockels cells were:{−π, −5π

4 }, and therefore the light was linear horizontally

polarised.

0 0.8 1.6 2.4 3.2 4 4.8 5.6

-0.75

-0.5

-0.25

0

0.25

Time in milliseconds (exactly one modulation cycle is shown)

R
et

ar
da

nc
e 

in
 w

av
el

en
gt

h 
un

its

1st Pockels
2nd Pockels

(a)

1

0.5

0

-0.5

-1

1

1
-1

-1

0 0

-0.5

-0.50.5
0.5

S1

S3

S2

(b)

Figure 3.4:(a) Time varying retardances of the Pockels cells as they were implemented in the exper-
iment. (b) Poincaré sphere representation of the generated states of polarisation (SPSG(t)) during one
modulation cycle. The blue dots on the sphere correspond to an instantaneous (vertical) pair of retar-
dances on the left graph. Retardances at timet = 0 produced the green dot just behind the arrow that
indicates the direction of the modulation as time progressed.

According to Fig. 3.3 there should exist an alternative modulation with∆1 contained

within a π radians interval that would have produced the same result. One example of

such modulation is shown in Fig. 3.5, but since a full wavelength retardance could be

produced with both Pockels cells, forλ = 532 nm, we chose the simpler approach of

the two sawtooth functions.
3Note that both retardances varied within a 2π radians interval (one wavelength).
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Figure 3.5:Alternative retardance functions for the Pockels cells with the values of∆1(t) within a
π radians interval. These retardances would produce the exact same set of states of polarisation as the
functions in Eq. 3.6 and Fig. 3.4(a).

Evaluation of the PSG

The most widely used parameter in the evaluation and optimisation of complete po-

larimeters is the condition number of the PSG and the PSA matrices [68, 94, 95, 96,

97]. This figure of merit is defined as the ratio of the largest to the smallest of the

singular values, and it reflects the orthogonality of the different states of polarisation

generated (PSG) or detected (PSA) with the instrument4. In the absence of system-

atic errors, the signal to noise ratio (SNR) is maximum when the condition number

is minimized [96, 97]. Nevertheless, it does not provide information about the over-

determination of the system or the number of times that each state of polarisation is

used or measured. The condition number can be used to compare PSAs restricted to 4

measurements to determine a Stokes vector, or PSGs that probe the sample with only

4 different states of polarisation. The comparison of polarimeters that use different

number of states of polarisation should be done carefully, and ultimately, operational

restrictions and ease of implementation should also be considered.

In polarimeters that use 4 different states of polarisation, the 4 optimum Stokes vectors

constitute the vertices of a regular tetrahedron that lies on the surface of the Poincaré

sphere, this was first suggested by Azzamet al. in 1988 [77]. The optimum condition

number for such type of configurations is equal to
√

3. Disregarding how the PSG and

the PSA were combined, the condition number of the 4×256 matrix that contains the

256 Stokes vectors generated in each modulation cycle was equal to 2. If, however,

only the 6 intersections of the Poincaré sphere with the coordinate axes are used, the

condition number of the 4×6 matrix would be equal to
√

3. These 6 points are the

green dots marked in Fig. 3.4(b) and were contained within the 256 states of polari-

4The condition number of a matrix is defined as the ratio of the largest to the smallest eigenvalue as
computed with the singular-value decomposition [98]
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sation generated by the PSG that we built. Clearly, states of polarisation sufficiently

orthogonal were generated in our polarimeter, that at least matched the condition num-

ber of the tetrahedron configuration.

A more realistic approach to evaluate the PSG is to analyse it as a part of the whole

Mueller matrix polarimeter. The combination of the PSG and the PSA, as to how an

experimental Mueller matrix was obtained, will be presented in section 3.3. It will

be shown that the 256 states of polarisation generated by the PSG were not measured

independently by the PSA, and that the actual quantities that can be considered as inde-

pendent measurements were 6 coefficients for each of the 4 detectors in the PSA. For

this reason, the evaluation of the PSG was based on the generation of this 6 quantities.

For the sake of clarity, this discussion will be presented in subsection 3.3.1, after the

description of the PSA and of how a Mueller matrix was measured.

3.1.2 Pockels cells implementation

The validity of the mathematical modeling discussed in subsection 3.1.1 strongly de-

pended on the precision of the angular alignment of the Pockels cells, the amplitude

of the voltage signals, and the magnitude of the voltage bias applied to compensate

for the residual natural birefringence. In this subsection, the experimental alignment

and determination of the voltage signals applied to the electro-optic modulators will

be described.

Each of the two transverse Pockels cells used in this Thesis was made of four Ammo-

nium Dihydrogen Phosphate (ADP) crystals:NH4H2PO4. ADP is an artificially grown

transparent uniaxial crystal that becomes biaxial when an electric field is applied [99].

The optic axis of the ADP crystal is aligned with theZ′ crystallographic axis in the

normal state and, when used in thelongitudinalmode, it is split into two axes when an

electric field is applied along its optical axis. No exact information is publicly available

about the exact configuration of the 4 crystals inside the Linos LM0202 electro-optic

modulators; however, it is common to arrange them into two pairs of 45◦ X′-cut crys-

tals with theX′ axes of one pair perpendicular to the other pair [100]; this arrangement

is shown in Fig. 3.6. Using the 45◦ X′-cut configuration, the first pair of crystals are

aligned to cancel double refraction, and the second pair is rotated 90◦ to compensate

for thermal instability and natural birefringence. In this configuration each crystal is

used in thetransversemode and makes use of the coefficientr41 of the electro-optic

tensor, which is approximately 3 timesr63 (r41 = 24.7±0.3pmV−1)[101].

In the transverse mode, the equation of the index ellipsoid (optical indicatrix) [102] of
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Figure 3.6: Typical configuration of 4 ADP 45◦ X′-cut crystals in a transverse-field electro-optic
modulator. The voltage is applied along theX′ axis (E); y′ andz′ indicate the other two crystal coordinate
axes, of whichz′ represents the optical axis of the crystal.

each ADP crystal becomes

x′2

n2
o

+
y′2

n2
o

+
z′2

n2
e

+2r41y
′z′Ex′ = 1; (3.8)

whereno andne are the refractive indices that correspond to the ordinary and extraor-

dinary rays, respectively, when no field is applied. AndEx′ is the magnitude of the

electric field (applied along theX′ axis). Equation 3.8 signifies that the dielectric ten-

sor is no longer diagonal in theX′Y′Z′ coordinate system and that a rotation in theY′Z′

plane, an angleφ around theX′ axis, is required to write it in a diagonal form. Defining

y′ = y′′ cosφ −z′′ sinφ , and (3.9a)

z′ = y′′ sinφ +z′′ cosφ , (3.9b)

it is easy to show that the index ellipsoid becomes

x′′2

n2
o

+
(

1
n2

o
+ r41Ex′ tanφ

)
y′′2 +

(
1
n2

e
− r41Ex′ tanφ

)
z′′2 = 1; (3.10)

with φ defined by

tan2φ =
2r41Ex′

(1/n2
o)− (1/n2

e)
. (3.11)

Substituting the numerical values of the ADP properties [102]5 in Eq. 3.11, one can

find that the rotation of the principal axesY′ andZ′ axes for an electric field as large

as Ex′ = 106 V/m , for instance, is of the order of 0.05◦. The angle of rotationφ

is small, thus, approximately linearly proportional tor41Ex′. When sufficiently long

crystals are used, this rotation of theX′Y′ plane is what what induces a change in the

5At a wavelength of 546 nm,no = 1.5266,ne = 1.4808, andr41 = 23.76pmV−1.
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birefringence between the two orthogonal linear polarisations: along theX′ axis and

along theY′Z′ plane. For rays that propagate at 45◦ with respect to the optical axis,

Z′, the change of birefringence is equal to(ne− no)φ . If the total crystal length is

of the order of 10 cm andEx′ = 106 V/m is applied, the retardation change between

ordinary and extraordinary rays is of the order of 5µm . For a crystal thickness of 4

mm, the corresponding half-wave voltage is approximately 200 V, which was in good

agreement with the experiment.

According to Eq. 3.10, the principal refractive indices should also change, and they

become

nx′′ = nx′ = no, (3.12a)

ny′′ = no−
1
2

n3
or41Ex′ tanφ , (3.12b)

ny′′ = ne+
1
2

n3
er41Ex′ tanφ . (3.12c)

But with φ being approximately linearly proportional tor41Ex′, this change is of second

order inEx′.

During the assembly of the experimental system, the tip-tilt alignment of the modula-

tors was made by ensuring that the light beam was not vignetted by the Pockels cell

and making the light propagate through as close as possible to the centre of the clear

aperture. Two polarisers and a photodetector were used for the alignment of the az-

imuth angle. The first Pockels cell was placed between a linear vertical polariser on

the entrance side and a linear polariser at 45◦ at the exit, see Fig. 3.7; after the latter,

a photodetector connected to an oscilloscope measured the intensity of light while a

sinusoidal voltage was being applied to the modulator.

P45

Glan-Taylor

Pockel's 1 Pockel's 2

Laser

P/90

L1

Pockel's cell 2

Pockel's cell 1

Spatial filer"P/φ" - Polariser at φ degrees

Qwp/45- Quarter waveplate at 45 degrees

Bs - Non-polarising beam splitter

PBs - Polarising beam splitter

L - Lens

D - Photodetector
Glan-Taylor 90o

Pockel's 1
45o

Light direction

Detector

Figure 3.7: Azimuth alignment of the first Pockels cell. The modulator was placed between two
polarisers as shown; The modulation of the intensity signal measured by the detector was minimum
when theX′ axis or theY′Z′ plane of the Pockels cell were aligned at 45◦.

The nominal half-wave voltage of the first modulator, (Serial number: 20950) accord-
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3. Experimental setup I: Mueller matrix polarimeter

ing to the manufacturer test sheet, was 220 V at 633 nm wavelength. This is approxi-

mately equivalent to 189 V at 532 nm. Being careful of not inducing an integer multiple

of a λ/2 retardation, a 1 KHz sinusoidal voltage signal of 100 Vpp was applied to the

first Pockels cell. The modulation of the intensity measured with the photodetector

changed when adjusting the azimuth angle of the Pockels cell, and it became a mini-

mum when the modulator’sX′ axis, shown in Fig. 3.7, was placed at 45◦ or−45◦. The

azimuth angles 0◦ and 90◦ had already been identified using crossed polarisers. Figure

3.8 shows two oscilloscope graphs of the sinusoidal voltage applied to the Pockels cell

and the optical signal when the alignment was considered best. The alignment was

done using only the AC component of the optical signal, Fig. 3.8(a); the full optical

signal (Optical power∼100µW) is shown in Fig. 3.8(b).
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Figure 3.8:Oscilloscope measurements from the alignment of the azimuth angle of first Pockels cell.
The red plot shows the optical signal measured with a power meter when the first Pockels cell was
aligned at 45◦ between a linear vertical polariser and a linear polariser at 45◦. The blue plot shows the
applied sinusoidal voltage monitored from the first Pockels cell amplifier (SN028). (a) AC component of
the optical signal; the origin of the vertical axis is in the middle of the grid. (b) Optical signal including
the DC component; the origin of the vertical axis is at the bottom of the graph. The scales of the graphs
are indicated in each legend.

When the second linear polariser was set to 0◦ and aλ/4 wave-plate (QWP) at 45◦ was

introduced it was identified whether the Pockels cell axis found was fast or slow; that

is, if the retardance induced to the modulator increased or decreased when augmenting

the applied voltage. Finally, the fast axis of the first modulator was aligned at 45◦, and

the same method, with the corresponding orientation of the polarisers, was used to set

the fast axis of the second Pockels cell to 0◦.

The amplitude and DC offset of the sawtooth voltage signals applied to the Pockels

cells were determined experimentally. Each Pockels cells was placed between two

crossed polarisers, with the entrance one set to 45◦ with respect to the already aligned
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3. Experimental setup I: Mueller matrix polarimeter

fast axis of the corresponding modulator. Initially, a sawtooth signal with amplitude

equal to the nominal half-wave voltage was applied to the Pockels cell, and an os-

cilloscope monitored the applied voltage and the detected intensity after the second

polariser. The amplitude and bias of the sawtooth signals were then adjusted to match

the desired retardance modulation defined by Eq. 3.7. When the amplitude of the

applied voltage induced the desired retardance modulation of amplitude equal to half

a wavelength, the sawtooth signal emulated a continuously increasing retardance. A

16 bit PCI card was used to generate the sawtooth signals using 256 points for each

modulation cycle (see subsection 3.3.2). The amplitude of the sawtooth was fine tuned

until the retardance gap between the last point of one period (a maximum) and the first

point of the following (a minimum) wasλ − λ

256. This is, until the detected intensity

signal appeared to have no discontinuities between any two sawtooth periods, see Fig.

3.9.
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Figure 3.9:Oscilloscope measurements from the adjustment of the amplitude of the sawtooth signal
applied to the second Pockels cell. The red plot shows the optical signal measured with a power meter
when the second Pockels cell was aligned at 0◦ between a linear polariser at 45◦ and a linear horizontal
polariser. The blue plot (not distinguishable because it overlaps the vertical axis) shows the applied
voltage signal at the time of the end of a sawtooth period and the beginning of the following. Only
the intensity at 10 out of the 256 points that formed a complete modulation cycle are shown, see Fig.
3.10(b) for a full period graph. (a) Optical signal with the sawtooth amplitude of the modulation smaller
than λ

2 ; (b) Optical signal with the sawtooth amplitude corrected to matchλ

2 .

The intensity graphs on Fig. 3.9 show a narrow time interval of the whole retardance

modulation cycle, before (a) and after (b) the adjustment of the voltage amplitude.

Note the time scale of both figures and compare them with Fig. 3.10(b), where a full

cycle is displayed after the amplitude and bias had been adjusted.

The DC bias of the sawtooth signal was fine tuned until the AC coupled intensity signal

detected after the second polariser was zero at the time each sawtooth period started.

Figure 3.9(b) shows an oscilloscope reading after the amplitude was set correctly, but
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3. Experimental setup I: Mueller matrix polarimeter

the bias still needed to be adjusted. The vertical axis on the oscilloscope screen indi-

cated the beginning of a sawtooth period. On Fig. 3.10 the oscilloscope reading of the

fully adjusted applied voltage and the optical signal is shown on two different scales.

The first graph (a) shows the scale used in the laboratory for the fine tuning of the

bias; the vertical axis indicates the beginning of a sawtooth period. The second plot

(b) displays a complete modulation period where now the origin of the horizontal axis

indicates the middle of a sawtooth period.

Vo
lta

ge
 o

n 
os

ci
llo

sc
op

e

Time

(a)

Vo
lta

ge
 o

n 
os

ci
llo

sc
op

e

Time

(b)

Figure 3.10:Oscilloscope measurement once the voltage amplitude and bias applied to the second
Pockels cell was finely tuned to match the retardance of Eq. 3.7a. Both graphs show readings of the
same two signals: applied voltage (blue) and light intensity signal (red). The scales between (a) and (b)
are different by a factor of 50 for the applied voltage graph, and by a factor of 5 for the light intensity
graph. The time scale of (b) is 40 times the time scale of (a). It is important to note that the origin of
the horizontal axes do not represent the same time. In (a) the vertical axis indicates the beginning of a
sawtooth. In (b) the origin of the horizontal axis indicates the middle of a sawtooth period.

3.2 Polarisation State Analyser: PSA

For every state of polarisation that was incident on the sample, a Division of Amplitude

Polarimeter (DOAP) was used to simultaneously measure the complete Stokes vector

of the light that was scattered from the sample. A schematic diagram of the PSA is

shown in Fig. 3.11. A non-polarising cube beam-splitter (Newport 10BC16NP.3),

Bs2, divided the beam into two equal branches. Along the first branch a polarising

cube beam-splitter (Newport 10BC16PC.3), PBs4, was used to direct horizontal lin-

early polarised light to photodetector D1, and linear vertically polarised light to pho-

todetector D2. In the second branch, another non-polarising beamsplitter cube, Bs3,

divided the light again, without changing the state of polarisation of the initial beam to

be measured. For these last two branches a polariser with its axis at 45 degrees, P45,
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was placed before the photodetector D3; and the combination of the beamsplitter, a

quarter-wave-plate with its fast axis at 45 degrees, and a linear horizontal polariser re-

sulted in a right-circular polarisation analyser placed in front of the photodetector D4.

The photodetectors D1-D4 (Si/PIN New Focus model 2001) that measured the 4 opti-

cal signals were connected to the same data acquisition board (iotech Daqboard/2000)

that was used to generate the voltage signals that modulated the retardance of the two

Pockels cells. The two analogue outputs of the board were updated synchronously

relative to the four scanned input signals.
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ND Filter 1

Iris 1

ND Filter wheel

Glan-Taylor Iris 2 Spatial Filter L1

Stop

Obj 3

Ph
Obj2

Bs1
Obj1

sample

Bs3

Bs2

P45

Qwp P0

PBs4

D1

D2

D3

D4

M2
M1

Pockel's 1 Pockel's 2

Figure 3.11: Schematic experimental polarisation state analyser within the confocal polarimeter.
Bs2: Non-polarising beam-splitter, PBs4: Polarising beam-splitter, Bs3: Non-polarising beam-splitter,
P45: Polariser with axis at 45◦, QWP: Quarter-wave-plate with fast axis at 45◦, P0: Polariser with axis
horizontal, D1-D4: Photodetectors. Faded area covers the polarisation state generator and the confocal
optics which are described in section 3.1 and chapter 5 respectively.

Since the introduction of the first DOAP by Azzam in 1982 [75], a number of pa-

pers concerning the optimisation, calibration, performance and application of different

DOAPs have been published [103, 76, 104, 78, 105, 67, 79, 106, 107]. Its principle

of operation is well understood and rather simple. In the remaining of this section the

details concerning the particular DOAP we implemented will be discussed.

3.2.1 Mathematical modeling of the PSA

Each of the 4 polarisation analysers in front of the photodetectors D1-D4 can obviously

be represented by a Mueller matrixDeti (for i = 1,2,3,4). The interaction with the

light scattered from the sampleSout, which we wanted to measure, resulted in
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3. Experimental setup I: Mueller matrix polarimeter

SDeti = Deti ·Sout, (3.13)

for each photodetector.

Figure 3.12 shows a diagram of the polarisation analysers in the DOAP. Detector D1

is preceded by a linear horizontal analyser; detector D2 by a linear vertical analyser;

detector D3 by a linear analyser with axis at 45◦; and detector D4 by a beam-splitter

reflection and a right-circular polariser which results in a left-circular polarisation anal-

yser.

Light direction

Bs2
QWP

P45

P0

D1
Linear - Horizontal

D2
Linear - Vertical

D4
Right - Circular

D2
Linear - 45o

Bs3
PBs4

Figure 3.12:Polarising elements of the PSA that define the 4×4 detection matrixD. Bs2 and Bs3:
non-polarising beam-splitters; PBs4: polarising beam-splitter; QWP: quarter-wave-plate with fast axis
oriented at 45◦; P0 and P45: linear polarisers with axis at 0◦ and 45◦ respectively; D1-D4: photodetec-
tors.

Since it is only the intensity of light that can be measured by each detector it is only

the first Stokes component ofSDeti that it is possible to detect, and therefore it is only

the first row of each of the four matricesDeti that becomes relevant in the modeling

of the polarisation state analyser. The light intensity measured by each photodetector

became then

I1 =
1
2

(
1 1 0 0

)
·Sout, (3.14a)

I2 =
1
2

(
1 −1 0 0

)
·Sout, (3.14b)

I3 =
1
4

(
1 0 1 0

)
·Sout, (3.14c)

I4 =
1
4

(
1 0 0 1

)
·Sout. (3.14d)

Note that the second beam-splitter required for detectors D3 and D4 decreases the

detected intensity by a factor of 2 with respect to detectors D1 and D2 and this explains

the scalar factors of14 in Eqs. 3.14c and 3.14d.

The last set of equations is best represented as one matrix equation in the same way it
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was originally introduced by Azzam [75],

I =


I1
I2
I3
I4

 = DPSA·Sout. (3.15)

where the matrixDPSA is clearly not a Mueller matrix and it is often called the PSA

instrument matrix. For the configuration we implemented,

DPSA =
1
2


1 1 0 0

1 −1 0 0
1
2 0 1

2 0
1
2 0 0 1

2

 . (3.16)

It is evident that in order to determine unambiguously the full Stokes vector,Sout, the

instrument matrixDPSA must be non-singular, and the same is required in Mueller

matrix polarimetry. For every input state of polarisation used to probe the sample, the

complete Stokes vector of the light returning from the sample must be measured.

The condition number of the instrument matrix is a valuable figure of merit when

evaluating the noise sensitivity of a Stokes polarimeter that acquires 4 measurements.

The condition number for the matrixDPSA is

cond(DPSA) = 3.61. (3.17)

The more distant the states of polarisation, which represent the eigenvectors of the

analysers in the DOAP, are from each other on the Poincaré sphere, the less suscepti-

ble to systematic errors the polarimeter becomes, and the better the sensitivity of the

instrument. Nevertheless, the condition number is not the only parameter to establish

the noise sensitivity and accuracy of an experimental Mueller matrix polarimeter.

3.3 Obtaining a Mueller matrix

Three slightly different configurations for illuminating the sample within the Mueller

matrix polarimeter were implemented throughout this work: two of them in reflection

and one in transmission. The three arrangements are depicted in Fig. 3.13. The dif-

ference between the systems in Fig. 3.13 (a) and (b) is only the order of the reflection
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and transmission passes through the beam-splitterBs1. For the transmission version,

shown on Fig. 3.13(c), the beam-splitter was removed, but the objectivesObj2 and

Obj3 and the pinhole were kept in place. Polarisation sensitive axial sectioning was

clearly not possible in the transmission arrangement of Fig. 3.13(c); this configuration

was built in order to investigate the isolated effect of using a pinhole in the detection

branch of the instrument, refer to subsection 5.2.2. Figure 3.13(a) shows the branch

for which the confocal microscope was implemented (see chapter 5) and it will be

referred to as thesamplebranch. Envisaging that a future version of this instrument

may be used in an environment such as in clinical diagnosis, where ease of operation

is more critical than in a research laboratory, the branch shown in Fig. 3.13(b) can

be used for calibration purposes as will be shown in subsection 4.2.2, and this will be

called thecalibrationbranch.

M

Light direction

Li
gh

t d
ire

ct
io

n

Stop

Obj 3

Ph
Obj2
Bs1
sample

PSG

PSA

Light direction

Stop Obj3PhObj2

sample
PSG PSA

Light direction

Li
gh

t d
ire

ct
io

n

Stop

Obj 3

Ph
Obj2

sample
M2PSG

PSA

(a)
Branch No.1

(c)
Transmission

(b)
Branch No. 2

Figure 3.13:The three different configurations of the sample illumination end in the Mueller matrix
polarimeter that were built throughout this work: (a)samplebranch, the one chosen for the measurement
of samples with the reflection confocal microscope; (b)calibration branch, the one that is used in the
two-branch calibration method of subsection 4.2.2; (c) the polarimeter in transmission.

In actual fact, the resulting PSG for thesamplebranch was different from the PSG for

thecalibration andtransmissionconfigurations by a reflection Mueller matrix6. Sim-

ilarly, the PSA for the calibration branch was different to the PSA for thesampleand

transmissionsetups. These differences can be easily taken into account by introducing

the multiplication of a reflection Mueller matrix (see Eq.2.5) to the left of the PSG

Stokes vectorSPSG of thesamplebranch, and to the right of the PSA detector matrix

of thecalibrationbranch as it will be shown below.

The general case of the sample Mueller matrix that was measured can be written as

6It was assumed, as a first approximation, that the objective lenses did not affect the polarisation of
light.
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MM sample=


m11 m12 m12 m13

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 , (3.18)

where all the coefficientsmi j may be linearly independent. Using Eqs. 3.5 and 3.16,

which represent the PSG and PSA of the Mueller matrix Polarimeter, it follows that,

in the absence of errors, the intensity vector defined in Eq. 3.15 became a function of

time given by

I(t) = DPSA·Bs1out ·MM sample·Bs1in ·SPSG(t), (3.19)

whereBs1in andBs1out are theBs1 beam-splitter Mueller matrices that depended on

the configuration used. These matrices were either the 4×4 identity matrixI4×4, or

the Mueller matrix of a reflectionMirror that appears in Eq. 2.5.

Bs1in =

{
Mirror , sample

I4×4, calibration and transmission,
(3.20a)

Bs1out =

{
I4×4, sampleand transmission

Mirror , calibration.
(3.20b)

SettingBs1in = Mirror andBs1out = I4×4 for the case of thesamplebranch, and after

some algebraic manipulation, the intensity vectorI(t) in Eq. 3.19 can be found to be

I1(t) =
1
2
(m11+m21)+

1
4
(m13+m23)cos(ω0t)+

1
4
(m13+m23)cos(3ω0t)

+
1
4
(m14+m24)sin(ω0t)+

1
2
(m22+m12)sin(2ω0t)−

1
4
(m14+m24)sin(3ω0t);

(3.21a)

I2(t) =
1
2
(m11−m21)+

1
4
(m13−m23)cos(ω0t)+

1
4
(m13−m23)cos(3ω0t)

+
1
4
(m14−m24)sin(ω0t)+

1
2
(m12−m22)sin(2ω0t)+

1
4
(m24−m14)sin(3ω0t);

(3.21b)

51



3. Experimental setup I: Mueller matrix polarimeter

I3(t) =
1
4
(m11+m31)+

1
8
(m13+m33)cos(ω0t)+

1
8
(m13+m33)cos(3ω0t)

+
1
8
(m14+m34)sin(ω0t)+

1
4
(m12+m32)sin(2ω0t)−

1
8
(m14+m34)sin(3ω0t);

(3.21c)

I4(t) =
1
4
(m11+m41)+

1
8
(m13+m43)cos(ω0t)+

1
8
(m13+m43)cos(3ω0t)

+
1
8
(m14+m44)sin(ω0t)+

1
4
(m12+m42)sin(2ω0t)−

1
8
(m14+m44)sin(3ω0t).

(3.21d)

This set of equations is only valid for thesamplebranch configuration, however, the

analysis for the other two cases is very similar, and also the resulting equations, which

will not be shown here.

The set of Eqs. 3.21 includes the 16 unknown Mueller matrix coefficients of the sam-

ple, and the harmonics that constitute the modulated intensities recorded by each of

the 4 detectors is a well defined finite set. All the information needed to calculate the

Mueller matrix of a sample is concentrated in the Fourier amplitudes of the frequencies

0, ω0, 3ω0 of the cosine terms, andω0, 2ω0, and 3ω0 of the sine terms. One advantage

of the combination of the PSG and PSA described here is that the remaining Fourier

coefficients were always zero, independent of the sample measured or the calibration

matrices that will be discussed in section 4.2.

3.3.1 Theoretical performance and optimisation of the PSG and

PSA

As was mentioned before, in subsection 3.1.1, the condition number of the PSG and

PSA matrices can be used to evaluate the theoretical performance of polarimeters that

do not take redundant measurements to over-determine the result. The performance of

the PSA can readily be evaluated and optimised through the condition number of the

matrix DPSA. To take such over-determination into account, the two parameters that

were introduced by Sabatkeet al. [12] in 2000 can be used: the reciprocal absolute

determinant (RAD), and the equally weighted variance (EWV).

RAD =
R−1

∏
j=0

1/µ j , and (3.22a)

EWV =
R−1

∑
j=0

1/µ
2
j ; (3.22b)
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whereR is the rank of the PSA or PSG, andµ j the non-zero singular values7.

The RAD is a generalization of figures of merit based on the determinant for polarime-

ters that use more than 4 states of polarisation, and the EWV takes into account the

variances of the Stokes vector estimate [12]. For the introduction of the EWV, Sabatke

et al. assumed that the noise between measurements was statistically independent, and

that all measurements had the same variance. They stated that these assumptions were

valid if the noise was signal-independent, or if the noise on the first component of the

Stokes vector dominated [12].

The PSG built during this work produced 256 states of polarisation per modulation

cycle of the Pockels cells. Nevertheless, it was shown, in section 3.3, that, when

combined with the PSA, all the information of the Mueller matrix of a sample was

contained in 24 Fourier coefficients, 6 for each detector. Equations 3.21 show that the 6

coefficients correspond to the amplitudes of the same frequencies in the 4 detectors: 0,

ω0, and 3ω0, for the cosine components, andω0, 2ω0, and 3ω0 of the sine components.

By simple inspection of Eqns 3.21, Eq. 3.19 can be rewritten as

I(t) = DPSA·Bs1out ·MM sample·Bs1in ·Q ·



1

cosω0t

cos3ω0t

sinω0t

sin2ω0t

sin3ω0t


; (3.23)

whereQ is a 4×6 matrix that can be defined using Eq. 3.5. Substituting the explicit

time varying retardances,∆1 and∆2 (Eqs. 3.6), into Eq. 3.5, and using some basic

trigonometric identities, the matrixQ can be determined from

SPSG(t) =


1

sin2ω0t

−1
2(cosω0t +cos3ω0t)

1
2(−sinω0t +sin3ω0t)

 = Q ·



1

cosω0t

cos3ω0t

sinω0t

sin2ω0t

sin3ω0t


. (3.24)

Clearly, for the chosen configuration of the PSG,

7For complete polarimeters R is always 4.
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Q =


1 0 0 0 0 0

0 0 0 0 1 0

0 −1
2 −1

2 0 0 0

0 0 0 −1
2 0 1

2

 , (3.25)

and this is the matrix that can be used to evaluate the sensitivity of the PSG to errors in

the calculated Fourier amplitudes. This matrix could be used, for instance, to optimise

the azimuth angles of the Pockels cells in the PSG. If it is assumed that the 6 Fourier

coefficients can be measured with the same precision from the modulated intensities

I(t), an optimal configuration can be chosen as the one that minimises one or more of

the figures of merit: condition number, RAD, or EWV. However, if the precision on

the measurement of the Fourier coefficients is not similar, balancing the matrixQ may

result in the amplification of the noise of the less precise coefficients.

For the polarimeter implemented in this work, the figures of merit of the matrixQ

were: RADQ = 2, EWVQ = 6, and condition number =
√

2. The smaller these fig-

ures the less sensitive to errors the configuration becomes. For comparison, the val-

ues for the 4 Stokes vectors tetrahedron configuration, shown below in Eq. 3.26,

are RADThetrahedron= 0.32, EWVTetrahedron= 2.5, and it was mentioned before that

cond(Tetrahedron) =
√

3.

Tetrahedron=


1 1 1 1

−0.58 −0.58 0.58 0.58

−0.38 0.38 0.73 −0.73

−0.72 0.72 −0.37 0.37

 (3.26)

The comparison should be done carefully. Calculated from the matrixQ, none of these

figures of merit contain information of how the Fourier coefficients were computed.

That is, for instance, about how many modulation cycles were used to calculate the

Fourier amplitudes, or how many samples were taken during each modulation cycle,

which was expected to have an impact on the precision of the measured coefficients.

These numbers provide a good estimate of how sensitive the design of the polarimeter

can be to errors in what is considered the raw data. If two different polarimeters do

not measure the same type of raw data, a simple comparison of the figures of merit

could lead to erroneous conclusions. On the other hand, these 3 figures of merit are

a valuable tool in the optimisation of a particular type of polarimeter. In the case of

the polarimeter built during this work, as mentioned above, they can be used to op-

timise the azimuth orientation of the Pockels cells. After a numerical computation,
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3. Experimental setup I: Mueller matrix polarimeter

it turns out that choosing the azimuths 45◦ and 17.5◦, respectively for the first and

the second Pockels cells, the three parameters are minimised to the following values:

RADPSGOPT = 1.84, EWVPSGOPT = 5.50, and cond(QPSGOPT) = 1.23. This configura-

tion, however, was not implemented in the experimental instrument.

Further analysis is necessary to evaluate the performance of a Mueller matrix polarime-

ter, but that falls beyond the scope of this work. The design of a polarimeter is often

driven by requirements other than mathematical performance. Ease of operation, lack

of moving parts, high speed of the measurements, and cost, for instance, may some-

times compromise the optimisation of the device. Additionally, the compatibility of the

PSG and the PSA of a system should also be evaluated, but that comprises part of the

future work that will be proposed at the end of this Thesis. It is worth mentioning here,

however, that De Martinoet al. have already reported a method for designing opti-

mised Mueller matrix polarimeters, based on the minimisation of the condition number

of the PSG and PSA [97]. The applicability of their method, to complete polarimeters

that make more than 16 intensity measurements, may need to be studied further. The

condition number may not be the only parameter that should be minimised.

3.3.2 Modulation parameters and data acquisition

The analogue to digital signal acquisition board (Daqboard/2000) could operate at a

maximum sampling rate of 200 kHz distributed among the number of input channels

used. Every time the modulation of the Pockels cells was started, a time delay of 5

seconds was introduced in the acquisition routine before the first measurement of the

four photodetectors was recorded. This was done in order to let the voltage signals

supplied by the Pockels cell amplifiers stabilize. For this reason, a fifth analogue input

channel of the board was used to monitor the beginning of every retardance modulation

cycle. The signal acquisition speed was limited by a maximum sampling rate of 40 kHz

for each of the five input channels. Using the maximum detection sampling rate of 40

kHz and arbitrarily choosing 28 data points for every retardance modulation cycle,

the Discrete Fourier Transform (DFT) vector of the recorded signal was calculated

at frequency intervals of 156.25 Hz. This determined the experimental value for the

modulation angular frequencyω0 that was defined in Eq. 3.7.

ω0 = 2π · (156.25 Hz) · rad/cycle. (3.27)

In order to reduce the influence of random experimental errors, every measurement
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3. Experimental setup I: Mueller matrix polarimeter

consisted of a sequence of 8 modulation cycles. The acquisition time for the data

used to calculate a complete Mueller matrix was 51.2 milliseconds. Figure 3.14 shows

graphs of typical experimental raw data as measured with the four photodetectors of

the DOAP. The data was taken using thesamplepolarimeter configuration and the

measured sample was Air, that is, no sample was placed in the polarimeter.
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Figure 3.14:Experimental raw data for Air (no sample) using thesampleMueller matrix polarimeter.
Graphs on the left contain the raw data signals recorded with the four photodetectors; the dots corre-
spond to individual values, and the black dashed line is the retardance∆2(t) generated with the second
Pockels cell. Graphs on the right show the Fourier series coefficients for each signal at the first 50 fre-
quencies sampled by the DFT. The blue circles and the red dots indicate the amplitudes of the cosine
and sine terms respectively.

The dots in the graphs of the detected signals shown in the left column of Fig. 3.14

correspond to individually measured intensity values. The error bars were smaller

than the marker size. The black dashed line in the four signal graphs corresponds

to the monitor signal (fifth analogue input channel) of the voltage function sent to

the amplifier of the second Pockels cell. The monitor signal was measured in volts,
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3. Experimental setup I: Mueller matrix polarimeter

however, for ease of interpretation, it was scaled to show the equivalent retardance

∆2(t) applied to the second Pockels cell. This line is the same in all four graphs.

The eight modulation cycles recorded during each acquisition are shown, and they

correspond to 2048 data points.

For every recorded intensity signal, the Fourier amplitude coefficients at integer multi-

ples of the frequency40 kHz
2048 were computed using the FFTW algorithm built in Matlab

6.5. The graphs on the right column of Fig. 3.14 show the first 50 cosine and sine

amplitudes, blue circles and red dots respectively. In accordance with Eqs. 3.21 the

cosine amplitudes of the angular frequencies 0,ω0, and 3ω0, and the sine amplitudes

of ω0, 2ω0, and 3ω0 from the 4 detected signals were used to build an over-determined

set of 24 simultaneous equations and 16 unknowns. The best approximate solution, in

the least square sense, of the set of simultaneous equations was found to obtain the 16

non-calibrated Mueller matrix coefficients of the measured sample. Using data similar

to that displayed in Fig. 3.14 the non-calibrated mean Mueller matrix of 10 subsequent

measurements of Air and the standard deviation for each coefficient were

Air non−calibrated=


6.121 0.389 0.005 0.023

0.385 5.630 −0.075 0.783

0.685 −1.158 −6.493 1.578

−0.446 −0.604 0.275 −5.239

 ; (3.28a)

SD(Air non-calibrated) =


0.005 0.007 0.008 0.006

0.004 0.004 0.004 0.002

0.002 0.002 0.004 0.005

0.002 0.002 0.005 0.004

 . (3.28b)

A second example of the intensity signals acquired from a sample, in this case using

a linear horizontal polariser, is shown in Fig. 3.15. In the absence of instrumental

errors and if the axis of the linear horizontal polariser had been aligned exactly at 0◦,

it is evident that the signal recorded with the linear vertical detector should have been

always zero.

The small signal modulation in the vertical-detector signal shows that an adequate

calibration method was necessary to isolate the errors produced by the instrument op-

eration from the inaccuracy of any assumptions made about a sample when the sample

is being used to calibrate the system. Such a calibration method had already been pro-

posed by Compainet al. [11] in 1999. This method and the modifications required for

its implementation in our system are described in the following chapter.
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3. Experimental setup I: Mueller matrix polarimeter
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Figure 3.15:Experimental raw data for a linear horizonal polariser as measured using thesample
Mueller matrix polarimeter. The legend is the same as for Fig. 3.14.
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4 Calibration: Double-pass

eigenvalue calibration method

(DP-ECM)

The calibration method played a key role in the validation of the experimental results

obtained in this thesis. It corrected all linear systematic errors introduced by the optical

components in the non-confocal polarimetry measurements, and since the calibration

of the system was made in the exact configuration in which the polarimeter was used

to obtain Mueller matrix measurements, it did not require two independent calibration

routines, one for the PSG and one for the PSA. This advantage ensured that, after cali-

bration, no additional optical elements were introduced (or removed) that could mod-

ify the state of polarisation of the incident or detected light. In addition, two different

matrices were computed to account for the linear errors in the PSA and the PSG in-

dependently. The calibration routine was based on the Eigenvalue Calibration Method

(ECM) developed by Compainet al. in 1999 [11], also described by De Martinoet

al. in 2003 [73]. A necessary modification to the original ECM was introduced in

this work to extend its applicability to double-pass measurements. In this chapter we

include a description of the original ECM (section 4.1), which was applied to calibrate

the matrices of samples measured with thetransmissionpolarimeter, and the resulting

Double-Pass Eigenvalue Calibration Method (DP-ECM in section 4.2) that was imple-

mented in thesampleandcalibration configurations of the confocal Mueller matrix

polarimeter.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

4.1 Single-pass-ECM (original ECM)

Any experimental non-calibrated 4×4 matrix (Bsample) similar to that in Eq. 3.28a,

or any raw data n×m measurement matrix, can be represented as in equation 1 of

reference [73] by the product:

Bsample= A ·MM sample·W. (4.1)

The matricesW andA contain the system errors associated with the PSG and PSA

respectively, and they may also contain all the polarimetry information associated with

the specific design of the PSG and the PSA. In the latter case, these two matrices may

not be 4×4 matrices [11]. In this work, the raw data recorded from every measurement

was first processed to compute a non-calibrated Mueller matrix using the method de-

scribed in section 3.3. For this reasonW andA represented the 4×4 Mueller matrices

that contained only the systematic calibration information of the system. The determi-

nation of these two matrices was the paramount result of the calibration method. In

the hypothetical situation where no systematic errors had been present in the measure-

ments, each of the matricesW andA would have become the 4×4 identity matrix. In

reality, these two matrices were not equal to the identity matrix, but since the Mueller

matrix polarimeter was complete, both of them were always invertible, and this is a

necessary condition for the implementation of the ECM. In mathematical terms this

signifies that it was required thatBsampleandMM samplewereequivalentmatrices.

In any of the setup configurations, four measurements of known samples were used

in the calibration routine:B0, air (no sample);B1, a linear horizontal polariser;B2,

a linear vertical polariser; andB3, a 532 nm zero-order quarter-wave-plate for the

transmissionconfiguration, or a 633 nm third order quarter-wave-plate for the double-

pass calibration. The second wave-plate became a−0.26λ seventh order wave-plate

for 532 nm in double-pass. Both sets of calibration samples are complete in the sense

that it is possible to determine the two calibration matrices without ambiguities.

According to the original ECM, the polarisation characteristics of the calibration sam-

ples can be experimentally measured from the eigenvalues of the product of the inverse

of the measurementB0 (air) and the corresponding non-calibrated matrix of the sam-

ple. Since the Mueller matrix of air was assumed to be the identity matrix, the three

products became

Ci = B0
−1 ·Bi = (A ·W)−1 · (A ·MM i ·W) (i=1,2,3). (4.2)
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

In the absence of experimental errors, the eigenvalues ofCi are the same as the eigen-

values ofMM i , given that the eigenvalues of a product of matrices do not depend on

the order of the product. The eigenvalues of these experimental measurements were

therefore used to characterize the calibration samples under the assumption that the

polarisers behaved as ideal polarisers, and the wave-plates only introduced linear re-

tardation and linear diattenuation.

The transmittance for non-polarised light of each of the polarisers was calculated from

τi =
1
2

trace(Ci) (i = 1, 2), (4.3)

and their Mueller matrices were assumed to be as in Eq. 2.9. In practice, this value

was compared, for a consistency test, to the sum,`1+`2, of the eigenvalues that appear

in Eqs. 2.8.

The calibration wave-plate (B3) was assumed to be ideally represented by a Mueller

matrix P(τ3,Ψ3,∆3), like the one defined in Eq. 2.6. Using Eqs. 2.8 the parameters

that characterizedMM 3 were experimentally calculated as:

τ3 =
1
2

(`1 + `2) ; (4.4a)

Ψ3 = arctan

√
`1

`2
; (4.4b)

∆3 =
1
2

arg

(
`3

`4

)
, (4.4c)

where`i were the measured eigenvalues ofP(τ3,Ψ3,∆3) (see Eqs. 2.8) obtained from

the matrixC3. The calculated eigenvalues ofMM 3 should not depend on the azimuth

orientation of the measured quarter-wave-plate1, but this was not tested experimentally.

Another consistency test was made by comparing|`3|2 and|`4|2 to the product̀ 1`2.

Subject to the determination of the orientation of the calibration samples, the three

Mueller matrices that represented the experimental calibration samples were:

1In mathematical terms, a rotation of a polarisation optical element along the optical axis is repre-
sented by asimilarity transformation (in this case alsounitary) that operates on the original Mueller
matrix. The eigenvalues of a matrix do not change after such transformations.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

MM 1 = Rot(θ1) ·Pol(τ1) ·Rot(−θ1), (4.5a)

MM 2 = Rot(θ2) ·Pol(τ2) ·Rot(−θ2), and (4.5b)

MM 3 = Rot(θ3) ·P(τ3,Ψ3,∆3) ·Rot(−θ3). (4.5c)

In the laboratory, the anglesθ1, θ2, andθ3 were chosen to be 0◦, 90◦, and 30◦, re-

spectively, as in [73]. Despite careful alignment, these angles were subject to small

experimental errors. However, the ECM was designed to take this into account, and

the calculation will be explained later in this section.

Using the experimental matrices (Ci) and the constructed matrices in Eq. 4.5,W was

equal to the unique solution (X) of the simultaneous set of linear equations

MM i ·X−X ·Ci = 0 (i = 1, 2, 3), (4.6)

as indicated in [11]. To this effect, the matrixW was considered to be the 16×1 vector

solution to the set of simultaneous linear equations

Hi ·
−→
X = 0 (i = 1, 2, 3), (4.7)

whereHi were 16×16 matrices that represented the linear mapping

Hi : X →MM i ·X−X ·Ci (i = 1, 2, 3). (4.8)

The solutionW to Eq. 4.7, in the least-squares sense, was found by calculating the

unique eigenvector associated with the null eigenvalue of the 16×16 positive symmet-

ric real matrixK defined by

K = HT
1 ·H1 +HT

2 ·H2 +HT
3 ·H3. (4.9)

Prior to the calculation ofW, the real azimuth orientation of the calibration samples

was determined. The anglesθ1, θ2, andθ3 were corrected by minimizing the ratio of

the smallest to the second-smallest eigenvalues of the mappingK as a three-variable

function. The minimum was found using the simplex algorithm in thefminsearch

function of Matlab 6.5. Using the corrected set of angles, theK mapping was built

again, and the unique eigenvector in the null space,W, was found.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

The determination ofA followed straightforward from Eq. 4.1 and

A = B0 ·W−1. (4.10)

Once the matricesW andA were found, the calibration of any measurement required

multiplying Bsample, in Eq. 4.1, byA−1 on the left, and byW−1 on the right, to obtain

Mueller matrixMM sample.

4.2 Double-pass-ECM

The DP-ECM consisted of the same 3 main steps required in the original single-pass

version.

1. Four calibration measurements were taken (B0, B1, B2, andB3).

2. The Mueller matrices that represent the samples were calculated using the eigen-

values of the matricesCi (i = 1, 2, and 3) defined in Eq. 4.2.

3. The calibration matrices,W andA, were found from the solution of the set of

simultaneous linear equations in Eq. 4.7.

The double-pass measurements, however, originated one further mathematical con-

strain in the calculation of the Mueller matrices in step 2. The commutativity of the

eigenvalues of a matrix product with respect to the order of the factors was no longer

sufficient to determine the parameters that characterized the Mueller matrices of the

measured calibration samples. The details will be explained in the following para-

graphs.

In the double-pass configurations of the polarimeter, the light passed twice across the

measured sample, propagating in opposite directions. For these measurements, an

additional mirror in thesampleandcalibration configurations of the setup was intro-

duced, see Fig. 3.13. Hence, instead of Eq. 4.1, the equation that represented a general

experimental double-pass measurement was

Bdp
sample= A ·MM −

sample·Mirror ·MM +
sample·W. (4.11)

The plus and minus signs indicate the direction of light when passing through the

sample, and the "dp" superscript stands for "double-pass". The plus sign corresponds

to the first pass, when light propagated towards the mirror, and the minus sign to the
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

second pass, when light had been reflected and travelled away from the mirror, towards

the PSA. The mirror matrixMirror in Eq. 4.11 represents a dielectric mirror with a

nominal reflectivity greater than 99.9% on which the angle of incidence was 0◦. This

mirror was assumed to be ideal and its Muller matrix represented exactly by Eq. 2.5.

As mentioned in the previous section, four measurements were also taken in the cali-

bration routine (step 1): air,Bdp
0 ; two linear polarisers,Bdp

1 (horizontal) andBdp
2 (verti-

cal); and a 633 nm third order quarter-wave-plate that became a 532 nm seventh order

−0.26λ retardation plate,Bdp
3 . It was assumed that the samples had the same behaviour

in the forward and backward propagation. The 633 nm third-order quarter-wave-plate

was aligned at 30◦ with respect to the first-pass coordinate system. The fast axis of

the retarder was therefore aligned at 30◦ during the first-pass and at−30◦ during the

second-pass. Apart from this difference in orientation, the wave-plate was assumed to

be a 633 nm third-order quarter-wave-plate in both directions.

The characterization of the calibration samples, step 2, required the computation of the

products

Cdp
i =

(
Bdp

0

)−1
·Bdp

i = (A ·Mirror ·W)−1 · (A ·MM −
i ·Mirror ·MM +

i ·W) (i=1,2,3);

(4.12)

and the commutativity of the eigenvalues with respect to the order of the factors was

sufficient to ensure that

eig(Cdp
i ) = eig(Mirror ·MM −

i ·Mirror ·MM +
i ), (4.13)

where eig(C) refers to the eigenvalues of the matrixC. Nevertheless, Eq. 4.13 is

not sufficient to associate the calculated eigenvalues to the eigenvalues of the Mueller

matrices of the calibration samples. A more detailed inspection of the matrix product

in the RHS of Eq. 4.13 allowed to overcome this difficulty.

Choosing the coordinate system of the first-pass of light across a calibration sample

(i), the Mueller matrices for each pass through the sample can be written as

MM +
i = Rot(θi) ·MM +

0◦,i ·Rot(−θi), (4.14a)

MM −
i = Rot(−θi) ·MM +

0◦,i ·Rot(θi). (4.14b)

WhereMM +
0◦,i is the Mueller matrix of the calibration sample aligned at 0◦. With

these last two equations, and replacing the productRot(θi) ·Mirror ·Rot(θi) with
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

the resulting matrixMirror , the double-pass Mueller matrix of a calibration sample

becomes

MM −
i ·Mirror ·MM +

i = Rot(−θi) ·MM +
0◦,i ·Mirror ·MM +

0◦,i ·Rot(−θi). (4.15)

The single-pass Mueller matrices of the calibration samples (i = 1, 2, and3), were

assumed to be of the same kind as in the single-pass ECM; At 0◦, the two polarisers

were assumed to be ideally represented by a matrix likePol(τi) (Eq. 2.9), and the

retarder by a matrix likeP(τ3,Ψ3,∆3) (Eq. 2.6). These two types of matrices commute

with theMirror matrix because, in both cases, the two 2×2 matrices contained in their

top-right and bottom-left corners are zero. One last re-arrangement of Eq. 4.15 leads

to

MM −
i ·Mirror ·MM +

i = Mirror ·Rot(θi) ·MM +
0◦,i ·MM +

0◦,i ·Rot(−θi). (4.16)

Finally, using this last equation, Eq. 4.13 is equivalent to

eig(Cdp
i ) = eig(MM +

i ·MM +
i ) = eig(MM dp

i ). (4.17)

The double-pass Mueller matrices (MM dp
i ) of the calibration samples and the calibra-

tion matrixW were calculated exactly as in the original ECM (section 4.1): the eigen-

values ofCdp
i were used to characterize the calibration samples, andW was found as

the unique vector in the null space of the linear mappingK. The azimuth orienta-

tion of the samples was also corrected by minimizing the ratio of the smallest to the

second-smallest eigenvalue of the mappingK as a function ofθ1, θ2, andθ3.

OnceW was determined, the other calibration matrixA was calculated from theBdp
0

measurement.

A = Bdp
0 ·W−1 ·Mirror . (4.18)

At this point, the choice of coordinate system for the representation of the double-

pass measurements was made. The orientation of a calibrated Mueller matrix was

defined using the coordinate system of the first-pass. The azimuth angle of a linear

polariser set at 45◦ in the first-pass, for example, became−45◦ in the second pass. An

experimental Mueller matrix, however, contained the information of the two passes
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

together. According to Eq. 4.16, the choice of the first-pass as a coordinate system

required that instead of the calibration matrixA, a double-pass calibration matrix

Adp = A ·Mirror = Bdp
0 ·W−1 (4.19)

was used. With this matrix, the calibration of a measurement likeBdp
sample in Eq. 4.11

resulted in

(Adp)−1 ·Bdp
sample· (W)−1 = Mirror ·MM −

sample·Mirror ·MM +
sample. (4.20)

If the measured sample commuted with the matrixMirror , when rotated to 0◦, the

RHS of this last equation becameMM dp
sample (see Eq. 4.16), with the azimuth angle

defined as in the first-pass. If the sample did not commute with the matrixMirror , the

use ofAdp instead ofA had no consequences in the data calibration because the matrix

Mirror is non-singular.

4.2.1 Choice of calibration samples

Different sets of calibration samples may be used in the ECM [11, 73], as long as their

Mueller matrices can be assumed to be of a well known type. The set of samples must

be such that only one eigenvalue of the mappingK is zero in order to determine the

calibration matrix without ambiguities. A suitable set of calibration samples had been

implemented by De Martinoet al. [73] and was the one used in this work : two linear

polarisers (one horizontal and one vertical) and a linear retarder oriented at 30◦.

The two linear polarisers were inexpensive polymer film polarisers (Newport 10LP-

VIS) with a typical extinction ratio of 2.5×10−4. They were oriented at 0◦ and 90◦,

crossed to the vertical and horizontal channels of the PSA respectively. The linear

retarder used was a 633 nm third order quarter-wave-plate that, in a double-pass mea-

surement, introduced an effective nominal retardance of approximately -0.26 waves

for the 532 nm wavelength that was used. This kind of retarder is an equivalent and

less expensive solution than a customised 532 nmλ/8 wave plate that could be used

as a double-pass quarter-wave-plate in the calibration. Furthermore, a customisedλ/8

wave plate was not necessary, as the actual retardance value was calculated during the

ECM.

The azimuth angle of the linear retarder that optimized the set of calibration samples

was calculated numerically by finding the orientation that minimized the ratio of the

smallest to the second-smallest eigenvalue of a simulated mappingK. This was done
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by building the matrix of the mapping using the same theoretical matrices in both

terms of Eq. 4.6. That is, the mapping matrix was built assuming ideal values for the

calibration matricesW andA. The 16 eigenvalues ofK are shown in Fig. 4.1 as a

function of the azimuth orientation of the linear retarder. Some of the eigenvalues are

equal. Using the 30◦ vertical grid line in Fig. 4.1 as reference, there are 3 eigenvalues

that are always equal to the 4th-largest function plotted, 2 are always equal to the 6th-

largest, and 2 are always equal to the 10th-largest function plotted. This overlapping

is not relevant and attention should be only be paid to the smallest (red) and second

smallest (blue or green) eigenvalues. The red line represents only one eigenvalue that

is equal to zero for all angles. In the graph, the azimuth angle (27.8◦) of the linear

retarder is highlighted because at this angle the second smallest eigenvalue is largest.
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Figure 4.1:Numerical eigenvalues of the linear mappingK (see Eq. 4.9) in the DP-ECM as a func-
tion of the angle of the 633 nm third order quarter-wave-plate. The other two calibration samples had
previously been chosen to be linear polarisers, one horizontal and one vertical.

This orientation is therefore considered optimum for a calibration with two crossed

polarisers and a linear retarder since it isolates as much as possible the null-eigenvector

of the mappingK; making the calculation less sensitive to noise or small alignment

errors.
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4.2.2 Two-branch DP-ECM

An advantage of the DP-ECM is that a double-pass polarimeter can be calibrated using

a different optical branch than the used for sample measurements. Using thecalibra-

tion andsamplebranches of the polarimeter once (see Fig. 3.13) is possible to obtain

the Mueller matrix of the beamsplitter that is part of the PSG and PSA. For any future

calibration one can choose which branch to use for calibration, and since thesample

branch is intended to be used sometimes with an objective lens, the calibration on a

separate branch can result extremely useful. This is particularly true if the polarimeter

is modified for clinical diagnosis, where the calibration on a daily basis may need to

be automatized.

The four possible directions of light across the beamsplitterBs1 are shown in Fig.

4.2. According to specifications, the beamsplitter was a non-polarising cube that could

be represented as the identity matrix in transmission and as an ideal mirror matrix

in reflection. Since errors in beamsplitter can be large [63, 108], it was important to

measure its Mueller matrices; one for each possible direction of light.

Light direction

Light direction

Li
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io

n
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t d
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ct

io
n

sample
branch

calibration
branch

(a) Bs1R1

(c) Bs1T1 (d) Bs1R2

(b) Bs1T2

Figure 4.2:The four possible paths of light through beamsplitterBs1. The matrix symbols, indicated
as the captions of figures (a), (b), (c), and (d), represent each of these 4 possible paths.Bs1 is the name
of the component and the subindicesT andR stand for transmission and reflection, respectively. The
non-polarising beamsplitter cubeBs1was part of both the illumination and detection parts of thesample
andcalibrationpolarimeters, as can be seen in Fig. 3.13.

The four measurements, however, were performed without moving the beamsplitter

from the exact position where it was used in the polarimeter. Two calibration routines

were sufficient to characterize the beamsplitter, one using thesamplebranch mirror

and one using thecalibrationbranch mirror. The two calibration routines needed to be
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

performed under the exact same conditions.

As a result of asamplebranch calibration, the matricesBs1R1 andBs1T2 (see Fig. 4.2)

were contained in the calibration matricesWsampleandAdp
sample. This can be written In

matrix notation as

Adp
sample= A1 ·Bs1T2 ·Mirror , and (4.21a)

Wsample= Bs1R1 ·W1; (4.21b)

whereA1 andW1 are the PSA and PSG calibration matrices, respectively, that do not

contain the beamsplitter error matrices.

Similarly, the result matrices of a calibration using thecalibrationbranch were

Adp
calib = A1 ·Bs1R2 ·Mirror , and (4.22a)

Wcalib = Bs1T1 ·W1. (4.22b)

With this matrices stored electronically, any future calibration performed in thecali-

bration branch could be used on measurements taken in thesamplebranch, and vice-

versa. ANEWcalibration using thecalibrationbranch was likely to produce different

calibration matrices depending mainly on how room temperature affected the voltage

amplifier signals and the Pockels cell retardances. A new calibration using the calibra-

tion branch, for example, produced

Adp
NEWcalib= A2 ·Bs1R2 ·Mirror , and (4.23a)

WNEWcalib= Bs1T1 ·W2. (4.23b)

In the ideal absence of noise, theNEWcalibration matrices for thesamplebranch were

equal to

Adp
NEWsample= A2 ·Bs1T2 ·Mirror = Adp

NEWcalib· (A
dp
calib)

−1 ·Adp
sample, and (4.24a)

WNEWsample= Bs1R1 ·W2 = Wsample· (Wcalib)−1 ·WNEWcalib. (4.24b)

As long as the polarimeter design did not change, the two pairs of "old" calibration
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

matrices could always be used to swap from one branch to the other.

4.3 Evaluation of the calibration

The results of 10 calibration routines were compared to assess the accuracy and re-

peatability of the double-pass measurements using thetriplets-polarimeter(see chap-

ter 5). Only the objective lens of the confocal optics was not included in this evaluation

or in any calibration of the system. The working distance of the objective lens was not

sufficiently large to introduce the calibration samples between the lens and the dielec-

tric mirror used in the double-pass calibration. The lens that focused the light towards

the pinhole, and the lens that collected the light after the pinhole and focused it on the

detectors were always used.

During each calibration routine, the four calibration samples were measured 13 times,

and the averages of the first 10 non-calibrated matrices were used to compute the ma-

trices W i and Adp
i (i=1...10), as described in section 4.2. The remaining three mea-

surements were then calibrated and averaged. Additionally, two other samples were

measured 5 times following each calibration: a linear polariser placed at−47◦±1◦,

and a 532 nm zero-order quarter-wave-plate with its fast axis at 0◦±1◦. These 5 mea-

surements were also calibrated using the corresponding pair of calibration matrices,

and then averaged. The Mueller matrices found from the 10 calibration routines were

averaged and are presented in Fig. 4.3. The standard deviation of each Mueller coeffi-

cient shows the variations in calibrating the system and computing the Mueller matrix

of a sample as a whole process; the numbers next to each bar are the standard deviation

of the 10 calibrations, which are also indicated by error bars.

The zero and close-to-zero coefficients in the theoretical Mueller matrices of some

samples impeded the use of percentage errors as meaningful evaluation parameters of

the repeatability of each individual coefficient. Instead, the root-mean-square of the

standard deviation of the 16 normalised Mueller matrix coefficients was calculated for

each sample, and the values were normalised using the transmittance for non-polarised

light (mm11) as maximum possible value. The results are shown in Table 4.2 together

with the maximum standard deviation observed in each sample.

The matrices shown in Fig. 4.3 were not normalized. They represent the absolute

Mueller matrices of the samples measured in double-pass. Since the theoretical Mueller

matrices of the samples were not known a priori, the evaluation of the accuracy of the

system was slightly more cumbersome. The theoretical matrices of the 6 measured
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Figure 4.3:Mueller matrices of 6 different samples:MM dp
B0

, MM dp
B1

, MM dp
B2

, MM dp
B3

, a Linear po-
lariser at−46.7◦, and a quarter-wave-plate at 0.2◦. Bars show the mean values of 10 sets of 3 or 5
measurements, depending on the sample; each set was calibrated using a different pair of calibration
matricesW i andAdp

i (i=1...10). Since the error bars appear very small in the page, the standard deviation
is indicated by the numbers below or above each bar.

samples were fitted using the transmittance for non-polarised light of the experimental

Mueller matrices; the polarisers and wave-plates were also fitted to the experimen-

tal azimuth angle. For the calibration samplesMM dp
B1

, MM dp
B2

, andMM dp
B3

, the mean

of the ten sets of corrected angles calculated during the calibrations were used; and

for the two additional samples, polariser and quarter-wave-plate, the mean of 10 az-

imuth angles was found using the polar decomposition published by Lu and Chipman

[60] on each of the ten averaged calibrated Mueller matrices. Two extra parameters

were used to fit the theoretical matrix of the calibration sampleMM dp
B3

: the retardance

∆3 = −1.54 and the diattenuation angleΨ3 = 0.766, which were found within the

calibration routine.

The experimental and theoretical Mueller matrices of the 6 samples are shown in Table

4.1. A simplified summary of the repeatability and accuracy is presented in Table 4.2.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

Experimental Theoretical (fitted)

MM dp
B0

τ = 1


1.000 −0.001 −0.002 0.002

−0.0007 1.000 0.000 0.001
−0.001 0.000 1.000 0.001
0.0003 0.000 −0.002 1.000




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



MM dp
B1

τ = 0.851
θ = 0◦


0.426 0.423 −0.002 −0.007
0.422 0.422 −0.002 −0.007
0.0010 −0.003 0.0021 0.0001
0.001 0.003 0.0001 0.0024




0.426 0.426 0 0
0.426 0.426 0 0

0 0 0 0
0 0 0 0



MM dp
B2

τ = 0.811
θ = 89.9◦


0.406 −0.405 0.004 −0.003
−0.405 0.408 −0.004 0.003
0.002 −0.003 0.0018 −0.0004
−0.003 0.002 0.0001 0.0025




0.406 −0.406 0.001 0
−0.406 0.406 −0.001 0
0.001 −0.001 0 0

0 0 0 0



MM dp
B3

τ = 0.983
θ = 28.9◦

∆3 =−1.54
Ψ3 = 0.766


0.983 −0.005 −0.022 0.003
−0.001 0.28 0.42 0.780
−0.006 0.42 0.69 −0.483
0.004 −0.779 0.490 0.02




0.983 −0.020 −0.032 0
−0.020 0.30 0.43 0.831
−0.032 0.43 0.71 −0.523

0 −0.831 0.523 0.03



Polariser

τ = 0.820
θ =−46.7◦


0.410 −0.023 −0.408 −0.006
−0.019 0.0023 0.020 −0.0134
−0.405 0.023 0.411 −0.030
0.004 −0.0004 −0.007 0.0079




0.410 −0.024 −0.410 0
−0.024 0.0014 0.024 0
−0.410 0.024 0.409 0

0 0 0 0



Wave Plate

τ = 0.983
θ =−0.2◦


0.983 0.004 −0.003 −0.026
0.003 0.982 −0.02 −0.01
−0.007 −0.01 −0.98 −0.02
0.016 0.00 0.02 −0.978




0.983 0 0 0
0 0.983 −0.02 0
0 −0.02 −0.98 0
0 0 0 −0.983



Table 4.1: The calibrated mean Mueller matrices in Fig 4.3 vs the fitted theoretical
matrices. The standard deviations of the experimental matrices are shown in Fig 4.3.
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The rms of the 16 standard deviations for each Mueller matrix was calculated and

are shown next to the maximum value obtained in each sample in Table 4.2. The

coefficients that should have been equal to zero were also included, and the values

were normalised to the coefficient mm11. The maximumrmsof σ was equal to 1.5%

for the zero-order quarter wave-plate, and the maximum individualσ was equal to

3.5%.

Repeatability Accuracy
rmsof σ max.σ rmserror max. error

MM dp
B0

0.3 % 0.6 % 0.1 % 0.2 %
MM dp

B1
0.5 % 0.9 % 0.8 % 1.7 %

MM dp
B2

0.7 % 0.9 % 0.5 % 0.8 %
MM dp

B3
1.0 % 2.4 % 2.6 % 5.2 %

Polariser 1.2 % 2.1 % 2.2 % 7.2 %
Wave Plate 1.5 % 3.5 % 1.1 % 2.7 %

Table 4.2: Normalisedrmsof the standard deviation of the 16 Mueller matrix coeffi-
cients (repeatability) andrmserror with respect to the fitted theoretical values (accu-
racy) of the 6 samples measured. Values are shown as percentages of the magnitude of
coefficientm11, and should not be confused with relative errors on individual Mueller
matrix coefficients.

The comparison of the experimental measurements with the theoretical fitted Mueller

matrices was done in a similar fashion. Thermsof the errors in the coefficients were

calculated and are presented in Table 4.2 next to the maximum difference obtained for

each sample. The values were also normalised to the coefficient mm11 and are shown

as percentage in Table 4.2. The maximum observed error was equal to 7.2%, and

occurred in the coefficient mm34 of the polariser at−47◦, but the maximumrmswas

measured on the calibration retarder, and was equal to only 2.6%. The accuracy of the

measurements depends on the samples being manufactured and modeled appropriately,

however, the magnitude of the errors reported here is comparable to values previously

reported in the literature: 0.5% [73, 11], 4% [72], 5% [67], and 10% [68]. Some of

these tests were done using only two samples, but Mueller matrix polarimeters have

different sensitivities for different coefficients, and this reflects on the accuracy and

repeatability of the measurements. To the best of our knowledge, up to this date, there

is no standard to evaluate the performance of a system, and Table 4.2 shows that a

test with a small number of samples may lead to erroneous evaluation results. The

development of a complete set of samples that measures the sensitivity for different

coefficients appears to be necessary, and this is suggested as part of the future research
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

proposal at the end of this Thesis.

The calibration matrices of our system only contained the systematic errors introduced

by the optical components. Had all the components been ideal,W and Adp would

have been equal to the identity matrix and their condition numbers equal to one. The

experimental condition number of these two matrices give an estimate of the departure

of the instrument from the analytical model due to errors in the optical components, and

are shown in Table 4.3. The ellipsometric angles of the retarder used for calibration,

the corrected azimuth angles of the three calibration samples, and the consistency tests

for the transmittance of the samples are also shown.

Mean standard deviation

cond(W) 1.10 0.01
cond(Adp) 1.53 0.01

∆3 -1.54 0.02
Ψ3 0.766 0.006

{ θ1, θ2, θ3} { 1◦×10−3, 89.9◦, 28.9◦} {5◦×10−4, 0.2◦, 0.1◦ }

τ
Bdp

1
: `1 + `2/trace(Cdp

1 ) 0.9945 0.0005

τ
Bdp

2
: `1 + `2/trace(Cdp

2 ) 0.995 0.002

τ
Bdp

3
: |`3or4|2/(`1`2) 0.91 0.02

Table 4.3: Parameters calculated during the DP-ECM. Mean and standard deviation of
10 calibrations.

The condition number of the calibration matrices was significantly different to 1. This

was expected as it had been reported that the beamsplitters can introduce significant

errors in the polarimetry measurements [63, 108]. This is a clear example of how ad-

vantageous the ECM results when an accurate modeling of the system is not achievable

a priori. This advantage was particularly important when determining the retardance

∆3 of the wave-plate used for calibration. The manufacturer (Comar) specifies the re-

tardance of the 158-GR-04 wave-plate as 2-4 order 0.250±0.005 for 632.8 nm. The

value measured during calibration was∆3 =−1.54±0.02 radians using 532 nm. This

value matches a third order retardance of 0.260±0.001λ for 632.8 nm, which, despite

not agreeing with the nominal value within the measurement error, it matches the value

of 0.262±0.002λ for 632.8 nm that we measured with thetransmissionpolarimeter.

One final evaluation parameter for the calibration of the polarimeter was the ratio of the

smallest to the largest eigenvalue for the linear mappingK that was solved to findW.

In practice, the smallest eigenvalue was not equal to zero, but if the next eigenvalue in

magnitude is much larger, then the of the null-space of the mapping is uniquely defined
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[11]. The 16 mean eigenvalues of the 10 calibration routines are shown in Fig. 4.4.

Typically, the smallest eigenvalue was more than two orders of magnitude smaller than

the second-smallest eigenvalue.
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Figure 4.4:Eigenvalues of the linear mappingK. Mean and standard deviation of 10 calibrations

Using the results of a numerical simulation, Compainet al. [11] suggested that the

ratio of the smallest to the largest eigenvalue can be used as an estimator of the errors

on the calibration matrices. This analysis, however, was not performed during this

work, and has been left for future work.

Time stability of the polarimeter

The confocal scan measurements in this work (see chapter 5) were performed manu-

ally. The samples were moved using a micrometer screw which made every 10µm

resolution axial scan of approximately 2 mm depth, a process that took nearly one

hour. The stability of the measurements with respect to time was tested taking 1331

measurements of each calibration sample every 5 seconds during a period of almost 2

hours (a gap of 5 additional seconds was left after every multiple of 11). The measure-

ments were taken using thetransmissionpolarimeter, but the results are also valid for

the other two configurations. The 1331 non-calibrated measurements for each sample

were averaged and the calibration matrices were calculated. Then, each of the 1331

non-calibrated matrices were calibrated and the complete sets of Mueller matrices for
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the samplesB0 (air) andB3 (a zero-orderλ/4 wave-plate at 30◦) are shown in Fig. 4.5

and 4.6, respectively. The maximum standard deviation was found in the coefficient

mm34 of the sampleB0. The normalised value of the fluctuation of this coefficient with

respect to the value of coefficient mm11 was equal to 1.3%. The rest of the fluctuations

were all smaller than 1%; for example, the maximum standard deviation for the sample

B3 was equal to 0.4%.
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Figure 4.5:Mueller matrix of the sampleB0 as a function of time, measured with thetransmission
polarimeter. Measurements were taken at intervals of 5 seconds apart through out a period of 2 hours.
The full range of the vertical scale is 0.07 in all graphs.

No temperature control was implemented on the Pockels cells, and this may be the

origin of the small time dependence of the Mueller matrix coefficients that can be ob-

served more clearly in Fig. 4.5. The laboratory room does not have a temperature

control system, nor air-conditioning either. The samples were measured in the follow-

ing order: B0, B1, B2, andB3. Before the first measurement, approximately 1 hour

was needed to check that the system was working adequately, and during this time one

person was always inside the laboratory room with the door closed2, which could have
2Dark conditions were necessary.
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Figure 4.6:Mueller matrix of the sampleB3 (a zero-orderλ/4 wave-plate at 30◦) as a function of
time, measured with thetransmissionpolarimeter. Measurements were taken at intervals of 5 seconds
apart through out a period of 2 hours. The full range of the vertical scale is 0.07 in all graphs.

risen the room temperature3. After the 1 hour check period, the measurements for the

sampleB0 began, as soon as the person left the room. Once the measurements for each

calibration sample were finished (after approximately 2 hours), the person entered the

room and the next sample was introduced. Changing the samples did not take more

than 3 minutes, and the measurements were restarted immediately, once again, after

the person had left the laboratory room. If the temperature of the room was increased

when the person was inside the laboratory, this increase would have been larger at the

beginning, when the person stayed for longer inside the room and with the door closed

(i.e. right before the measurements ofB0 were started). Perhaps, this is the reason why

the long term fluctuations were larger for the first sample,B0. This is an effect that was

not investigated further, however, the errors induced in the Mueller matrix coefficients

were small.

3The temperature was not measured.
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5 Experimental setup II:

Confocal Mueller matrix

polarimeter

The confocal microscope used in this work was built in the reflection configuration

(epi-illuminated) [88]. In the paraxial approximation regime, this configuration is a

requirement to obtain polarisation-sensitive depth-resolved measurements. A trans-

mission confocal microscope can obtain depth resolved measurements, however, the

light passes through the whole length of the sample (along the optical axis) before

being detected. In a transmission confocal microscope, focusing the light at different

depths within the sample displaces axially theconeof light inside the sample, and may

also change its shape. For systems with low numerical apertures (N.A.) or for very

thin samples, however, the position and shape of theconeof light may remain almost

the same within the sample. Therefore, the polarisation-sensitive measurements may

also remain the same even when focusing the light at different depths. In transmission

microscopes with high N.A. this might not apply. Theconeof light inside the sample

can enclose significantly different portions of the sample when focusing at different

depths, and polarisation signatures of the sample might also be retrieved from different

depths. The incorporation of a high numerical aperture transmission confocal micro-

scope with a Mueller matrix polarimeter will be suggested as a future investigation

topic at the end of this Thesis.

Two different reflection microscopes were built with the simplest possible confocal

optics. Given that it was the first time that these two techniques were combined, it was
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5. Experimental setup II: Confocal Mueller matrix polarimeter

important to assess if there was any impact on each other, therefore, a simple optical

design was preferred. A reciprocal configuration of the confocal microscope, which

could have ensured a correct alignment of the pinhole [91], was not used because

it would have made more cumbersome to adjust the size of the pinhole (see section

5.2). The first version of the microscope used three doublets of different focal lengths,

and the second version consisted of three identical triplet lenses (Linos HALO 03

8903). A schematic diagram of the final confocal microscope is shown in Fig. 5.1.

The collimated light that propagated away from the PSG entered the beamsplitterBs1

and was reflected towards the objective lensObj1. This lens focused the light on the

sample, and the light that was reflected or scattered from the sample was collected

again by the tripletObj1. The objective lens and the second triplet (Obj2), formed an

image of the sampled point onto the confocal pinhole plane. The last triplet (Obj3)

collected the light passing through the pinhole and focused on the four detectors of

the PSA. The mirrorM2 that appears in the figure was only used for alignment; when

measurements were taken, the mirror was blocked. This was also the branch used in

the two-branch calibration method (see subsection 4.2.2).

Obj 3

Obj2

Bs1
Obj1

sample

M2

Ph

Stop

Figure 5.1: Confocal microscope built with the Mueller matrix polarimeter. Refer to Fig. 3.1 for
position within the full system. MirrorM2 was used for alignment only. Obj 1, 2 and 3, objective
lenses; Stop, system’s pupil; Ph, pinhole.

The original motivation for this Thesis was to acquirein-vivodepth-resolved complete-

polarisation-sensitive measurements of the human retina and therefore, the numerical

aperture of the system was very similar to the numerical aperture of a human eye: 0.19

for the microscope with doublets (25 mm focal length objective and 10 mm pupil), and

0.14 for the final microscope that used triplets (30 mm focal length objective and 8.5
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5. Experimental setup II: Confocal Mueller matrix polarimeter

mm pupil). The effective N.A. of the eye is approximately equal to 0.16 (22 mm focal

length and 7 mm pupil [109]).

The microscope constructed with doublets showed a poor performance regarding the

polarimetry measurements due to polarisation inhomogeneities in the optics, as it will

be shown later. Nevertheless, the first axial scans of complete polarisation-sensitive

measurements were taken with this configuration and the description of the system is

presented in this chapter. The spot of light on the pinhole plane of the second version

of the system was diffraction limited and the calculated lateral resolution was better.

The accuracy of the polarisation measurements also improved. The axial resolution

limit of both systems and the first investigations of the effect of the confocal design on

the polarisation measurements are also presented in this chapter.

5.1 Confocal optics

5.1.1 Confocal polarimeter using doublet lenses

The objective lens (Obj1) of the first polarimeter (doublets-polarimeter) was a 25.4

mm focal length achromatic doublet (Newport PAC022), and the lens that focused

the light on the pinhole (Obj2) was an achromatic doublet of 125 mm focal length

(Newport PAC055); the nominal transverse magnification between the sample and the

pinhole plane was 125/25.4 = 4.9. Using a Zemax model that included the lens data1

provided by the manufacturer, this configuration produced a diffraction limited spot on

the sample plane with Strehl ratio equal to 0.83 and Airy radius equal to 1.7µm. When

a flat mirror was put on the sample plane of the model, the Strehl ratio of the whole

system (a the pinhole plane), was 0.46. For a pupil diameter of 8.7 mm, instead of 10

mm, better Strehl ratios were found: 0.92 for the sample plane and 0.78 for the pinhole

plane, however, this was not implemented in the laboratory. The lateral experimental

resolution was not tested in this work, and only axial scans were performed with the

confocal microscope. The axial response of thedoublets-polarimeterwas tested by

scanning a flat mirror through the focal region of the illumination spot. The axial

movement of the mirror was done by turning manually a micrometer screw which had

a minimum division of 1µm. While scanning the mirror, the Mueller matrix at each

axial position was measured and calibrated; two different sizes for the confocal pinhole

1The models in Zemax included the curvature of the refracting surfaces, the spacing between them,
and the type of glass of each lens. The models were made for the same wavelength used in the experi-
ments: 532 nm.
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5. Experimental setup II: Confocal Mueller matrix polarimeter

were used: 25µm diameter (6 o.u. radius) and 50µm diameter (12 o.u. radius)2. The

coefficient mm11, which is equal to the intensity reflectivity for non-polarised light,

was used to calculate the axial resolution of the system, and is shown on Figure 5.2 for

both pinhole sizes.

-200-150-100 -50 0 50 100 150 200
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0.3
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0.7

Axial position in µm

Mirror scan 25 µm pinhole
50 µm pinhole
Modeled with Zemax

25 µm
µm

50 µm
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FWHM

26.4

45.6

µm

µm

30.3

46.6

Figure 5.2:Axial response of thedoublets-polarimeterfor two different pinhole diameters. Experi-
mental m11 coefficient (circles) and Zemax results (green curves) are shown. The Zemax models were
normalized to the corresponding experimental maxima. Negative axial positions indicate that the mirror
was placed between the objective lens and its focal plane.

The green curves in Fig. 5.2 were calculated using theDiffraction Encircled Energy

function built-in Zemax-EE Version January 1, 2003. Different Zemax models were

made by increasing the distance between the objective lens (Obj1) and a planar mirror,

and then calculating the energy encircled by an aperture equal to the corresponding pin-

hole diameter. The Zemax model curves were normalized to the experimental maxima

because the objective lens was not used during the experimental polarimeter calibra-

tion. The Zemax models did not include coatings of the refracting surfaces, therefore,

the back reflections of the objective lens, that affected the mean value of m11, were

not included in the models. The plots in the figure were aligned using the centre of

the full-width-half-maximum (FWHM), which is the parameter commonly used as a

measure of the resolution3. According to Wilson [91], the asymmetry of the curves

is typical of axial confocal measurements, often due to spherical aberration introduced

by defocus, and the agreement with Zemax models indicates that the microscope was

aligned correctly.

2[optical units (o.u.)] =2π

λ
N.A.[spatial units].

3The resolution of a systemincreaseswhen the minimum length that two objects can be separated
to be distinguishabledecreases[88].
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5. Experimental setup II: Confocal Mueller matrix polarimeter

The rest of the calibrated Mueller matrix coefficients of the axial scan of the mirror are

shown in Fig. 5.3. This result constitutes the first combination of complete Mueller

matrix polarimetry and depth-resolved confocal imaging. The calibration of the mea-

surements did not include the objective lensObj1, which was incorporated after the

double-pass calibration samples had been measured, and the measurements for both

pinhole sizes were calibrated using the sameW and Adp. The calibration matrices

were calculated from measurements that included the two lensesObj2 andObj3, but

not the confocal pinhole either, to investigate the dependence of the Mueller coeffi-

cients on the pinhole size. Calibration measurements were also taken using the two

confocal pinholes, and the calibration matrices were computed. The results that used

the corresponding pinhole calibration matrices were very similar to the ones presented

in Fig. 5.3, but a more detailed analysis on how the pinhole size affects the measure-

ments is presented in section 5.2. The objective lens was not included in the calibration

measurements because the working distance of the lens was not sufficiently long to put

the calibration samples between the objective and the mirrorM (see Fig. 3.13a), and

also from recalling the original motivation of this project; forin-vivo imaging of the

human retina, the cornea plays the role of the objective lens, and it clearly cannot

be used in the calibration routine. An additional step in the calibration routine will be

required in the future, even when the measurements are taken with a microscope objec-

tive, especially when the application requires higher numerical apertures, i.e. shorter

working distances of the lenses. This part was not covered in this work and is included

in the proposal for future work in chapter 7.

The Mueller matrix of the axially scanned mirror was different form the identity ma-

trix, which represents a mirror in the chosen double-pass coordinate system in this

work (see section 4.2). Two different types of departure from the ideal identity ma-

trix can be observed on the Mueller coefficients in Fig. 5.3: one that looks like an

even function with respect to the highest signal4 (e.g. coefficientMirror24); and one

that looks like an odd function (e.g. coefficientMirror32). The only lens that was not

included in the calibration was the objective lens, and this contributed to the departure

of the Mueller matrix from the identity, as it will be shown later. The introduction of

the objective lens also focused the light on the mirror, and this could have generated

a significant axial component of the electric vector [84, 85], and we still do not know

how much this modified our measurements. The numerical aperture used in this work

was small compared to studies on the polarisation changes produced by high aper-

4Note that the asymmetry of the function is the same as in the coefficientMirror11. If the coefficients
are normalised to unit-transmittance the graph looks like a constant function.
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Figure 5.3:Axial Mueller matrix response of thedoublets-polarimeterwith 25 and 50µm diameter
confocal pinholes.

ture lenses [110, 82, 84, 85], and as a first approximation, the axial component was

neglected in this work; nevertheless, the compromise between the accuracy of the po-

larimetry measurements and the spatial resolution of the microscope will be suggested

as future research at the end of this work.

We began the investigation of the non-vanishing values of the off-diagonal coefficients

using thedoublets-polarimeterto take measurements of different samples with dif-

ferent pupil sizes (10, 8, 6, 4, and 2 mm). At the same time of processing the data,

we realised that the three doublets used in the polarimeter showed strain induced po-

larisation artefacts when viewed through crossed polarisers, possibly strain induced

birefringence. The origin of this polarisation artefacts falls beyond the scope of this

work, but Fig. 5.4 shows three representative photographs of this effect on theObj3.

The effect was very similar on the three lenses, and it was strongest at the points of

contact between the mechanical mount and the lens. Figure 5.4 (a) shows the lens illu-

minated with polarised light and with no analyser in front of the camera.The pictures
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5. Experimental setup II: Confocal Mueller matrix polarimeter

on Fig. 5.4 (b) and (c) show the lens between linear polarisers almost crossed and

crossed, respectively.

(a) (b) (c)

Figure 5.4: Strain induced polarisation artefacts on an achromatic doublet (Newport PAC040). a)
Illuminated with polarised light; b) between polarisers almost crossed; c) between crossed polarisers.
This lens was used as theObj3 in thedoublets-polarimeter. The diameter of the lens was 25.4 mm.

These polarisation artefacts may introduce errors that the calibration method cannot

remove because only the average effect across the area used on the lens was measured.

In the presence of spherical aberration, for instance, the light that can pass through

the confocal pinhole may be focused using a different radial portion of the lens, for

different axial positions of the pinhole; this means that a spatially resolved calibration

(imaging polarimetry) may be necessary, and this will be suggested as future research

at the end of this Thesis. It should be noted, however, that despite the rather localised

polarisation artefacts at the edge of the 25.4 diameter lens shown in Fig. 5.4, the central

part of the pupil appears more or less uniform. In the experiments, pupil sizes no larger

than 10 mm were used with thedoublets-polarimeter. A Babinet-Soleil compensator

could have been used to counterbalance these effects if they were due to homogeneous

retardance across the lens aperture, however, this was not implemented in this Thesis.

The mean results of measuring 10 times the Mueller matrix of the objective lens using

different pupils, without pinhole, are presented on Fig. 5.5. A pair of calibration matri-

ces was calculated for each pupil size and no pinhole was used. Despite knowing that

the data was affected by the strain induced polarisation artefacts, the Mueller matrices

were characterized using polar decomposition [60] to estimate the order of magnitude

of the variation as a function of pupil size. As a reference, the retardance values for

each pupil size, calculated using the polar decomposition, are presented in Table 5.1.

Statistically significant differences were found in the Mueller matrices of the objective

lens when measured using different pupil sizes, but the polarisation inhomogeneity of

the doublet lenses degraded the reliability of the measurements. Instead of developing

a spatially resolved calibration method, the confocal optics were replaced, and a new
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Figure 5.5:Doublet objective lens (Newport PAC022) measured in double-pass when focused on the
surface of a dielectric mirror. The measurements were calibrated using a set of calibration matrices
calculated with the corresponding pupil size. No pinhole was used for these measurements.

microscope was built.

5.1.2 Confocal polarimeter using triplet lenses

The second version of the confocal polarimeter was built with two 30 mm focal length

triplet lenses (Linoshigh-aperture-laser-objectivesHALO 03 8903) instead of the two

doublets, and the lens (Obj3) that collected the light behind the pinhole and focused it

on the 4 detectors was also a triplet of the same kind. When viewed between crossed

polarisers, no strain induced polarisation artefacts were noticed in the lenses, but this

was not recorded with a camera in this work. The spot of light produced on the sample

plane of a Zemax model was diffraction limited for the 8.5 mm aperture used in the

experiments, with a Strehl ratio of 0.97. The Airy radius of the model was 2.2µm. On

the pinhole plane, the Strehl ratio was 0.83. According to the Zemax models, the lateral
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5. Experimental setup II: Confocal Mueller matrix polarimeter

Retardance Lin. Ret. Angle
mean σ mean σ

2 mm 0.496 0.002 −37.0◦ 0.1◦

4 mm 0.504 0.005 −36.9◦ 0.3◦

6 mm 0.511 0.005 −35.4◦ 0.2◦

8 mm 0.491 0.005 −37.2◦ 0.2◦

10 mm 0.457 0.005 −39.2◦ 0.3◦

Table 5.1: Total retardance (linear and circular), in radians, and angle of linear re-
tardance of the objective lens (Newport PAC022) measured in double-pass with the
doublets-polarimeterusing five different pupil sizes.

resolution was better in thedoublets-polarimeterthan in thetriplets-polarimeter. An

axial scan of a flat mirror was also performed to test the axial response of the system.

Figure 5.6 shows the results of 3 scans using a 20µm diameter pinhole (17 o.u. radius),

and 2 scans using a pinhole of 5µm diameter (4 o.u. radius). The FWHM values

shown are the average of the 2 and 3 experimental runs for the 5 and 20µm pinhole

sizes, respectively.
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Figure 5.6:Axial response of thetriplets-polarimeter, when moving a flat mirror through the sample
focal region, for two different pinhole diameters: 5 and 20µm. Experimental m11 coefficient (circles)
and Zemax results (green curves) are shown with the corresponding FWHM values. Negative axial
positions indicate that the mirror was placed between the objective lens and its focal plane.

The complete Mueller matrices of these mirror axial scans are shown in Figs. 5.7 and

5.8, for the 5 and 20µm pinholes, respectively. The system was calibrated without

pinhole for the data in Figs. 5.7(a) and 5.8(a); and Figs. 5.7(b) and 5.8(b) contain the

data of the scans when the system was calibrated with the corresponding pinhole in the

exact same position as when the scans were made.
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(a) The system was calibrated first without the confocal pinhole used for the
scan.

-200-150-100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Axial position in µm

Mirror44

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror43

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror42

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror41

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror34

-200-150-100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Axial position in µm

Mirror33

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror32

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror31

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror24

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror23

-200-150-100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Axial position in µm

Mirror22

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror21

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror14

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror13

-200-150-100 -50 0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Axial position in µm

Mirror12

-200-150-100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Axial position in µm

Mirror11

05 µm ph - 1
05 µm ph - 2

(b) The system was calibrated with the confocal pinhole in the exact same posi-
tion as when the scans were made, the point of best focus.

Figure 5.7:Axial Mueller matrix response of thetriplets-polarimeterwith a 5µm confocal pinhole.

87



5. Experimental setup II: Confocal Mueller matrix polarimeter

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror44

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror43

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror42

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror41

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror34

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror33

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror32

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror31

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror24

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror23

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror22

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror21

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror14

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror13

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror12

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror11

20 µm ph - 1
20 µm ph - 2
20 µm ph - 3

(a) The system was calibrated first without the confocal pinhole used for the
scan.

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror32

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror31

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror24

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror23

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror22

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror21

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror14

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror13

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror12

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror11

20 µm ph - 1
20 µm ph - 2
20 µm ph - 3

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror44

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror43

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror42

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror41

-200-150-100 -50 0 50 100 150 200
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

Axial position in µm

Mirror34

-200-150-100 -50 0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Axial position in µm

Mirror33

(b) The system was calibrated with the confocal pinhole in the exact same posi-
tion as when the scans were made, the point of best focus.

Figure 5.8:Axial Mueller matrix response of thetriplets-polarimeterwith a 20µm confocal pinhole.
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5. Experimental setup II: Confocal Mueller matrix polarimeter

Similarly to thedoublets-polarimeter, the objective lensObj1 was removed from the

system during the calibration routine. This might have contributed to the non-zero

values in the off-diagonal Mueller matrix coefficients of the mirror, which were not

present when the lens and the pinhole were not used (see Fig. 4.5). These coefficients,

however, were smaller than with thedoublets-polarimeter(see Fig. 5.3); for example,

the coefficient Mirror24 was 5 times smaller with thetriplets-polarimeter.

The shape of the axial function of some coefficients in the first 20µm pinhole scan

(pink circles in Fig. 5.8(b)) is noticeably different to the other two scans made with

the same pinhole (blue and red circles). This first axial scan and its calibration mea-

surements were taken prior to the realignment of the confocal pinhole of the system.

While every effort was always made to place the pinhole at the point of best focus,

the precision of the axial position of the 20µm pinhole was of the order of±25 µm,

because of the large pinhole size, and this might have been the cause of the marked

difference in the coefficientsMirror23, 34 and 43of the first scan. When the system was

calibrated using the confocal pinhole, these differences were smaller (see Fig. 5.8(b)),

but remained visible. The calibration of the system with the confocal pinhole can im-

prove the accuracy of the measurements, but we believe it can also introduce a new

source of errors: the optical aberrations of the calibration samples can change the size,

shape, and position of the spot focused on the pinhole plane; therefore, in the presence

of spatial polarisation inhomogeneities in the system, the average state of polarisation

of the light that can pass through the pinhole may depend on the position and size of

the confocal pinhole.

The total retardance, linear retardance, and azimuth angle of the linear retardance at

three axial positions of the mirror scans were calculated using Lu’s polar decomposi-

tion [60]. The three positions were the maximum and the two edges of the FWHM

of the coefficientMirror11. The three parameters were calculated from matrices that

were calibrated with and without the corresponding confocal pinhole. These results

are presented in Fig 5.9, where it is noticeable that the effect of the 5µm pinhole on

the measurements was larger than when the 20µm was introduced.

Higdonet al. reported that the extinction ratio in a confocal polarisation microscope5

depended on the size of the pinhole and the numerical aperture [112]; they showed

experimentally that for smaller pinhole radii or numerical apertures, the extinction

coefficient obtained was higher. Higdonet al. also compared the extinction coefficient

5Prior to this work, a confocal polarisation microscope has been understood as a polarisation sensi-
tive device in its simplest form: a confocal microscope with a linear polariser inserted into the illumina-
tion beam, and a linear analyser into the detection path [111, 82, 112, 86].
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Figure 5.9:a) Total retardance, b) linear retardance, and c) azimuth angle of the linear retardance
of three Mueller matrices in the axial scan: The maximum and the two edges of the FWHM on the
coefficientMirror11. The values were calculated using Lu’s polar decomposition [60], on the data that
appears in Figs. 5.7 and 5.8.

of their crossed-polariser system with and without a Babinet-Soleil compensator that

could cancel the birefringence in the optical elements of the microscope. They reported

a tenfold improvement when the compensator was used. The addition of a variable

retarder to the optics of our confocal Mueller matrix polarimeter may compensate for

the birefringence of the objective lens that was not included in the calibration routine,

nevertheless, if this is not the only effect of the lens on the polarisation, or if the

linear retardance it introduces is not homogeneous across the aperture on the lens, the

correction may not be sufficient. Additionally, the errors introduced by the optical

aberrations of the calibration samples will remain. The solution to this calibration

problem was not investigated in full in this work, and despite the small retardance

measured from the objective lens used here (see Fig. 5.9), this effect may be more

significant for higher numerical apertures. In this work, some preliminary studies of

this effect were performed, and they are presented in the following section.

5.2 First experiments on the effect of the size of the

confocal pinhole on the Mueller matrices

5.2.1 Polarimeter in reflection

According to previous research on confocal microscopes that used linear polarisers

the size of the detector (pinhole), as mentioned above, has an influence on the ex-

tinction ratio of a microscope that uses crossed linear polarisers. The first question

that arose after the combination of the Mueller matrix polarimeter with the confocal

microscope was how the pinhole affected the polarimetry measurements. In this sec-
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tion, preliminary experimental results of the effect of the confocal pinhole on Mueller

matrix measurements are presented.

The four calibration samples (Bdp
0 , Bdp

1 , Bdp
2 , andBdp

3 ), a polariser at 45◦, and a quarter

wave-plate at 0◦ were measured using confocal pinholes of 5 different sizes: 50, 30, 20,

10, and 5µm (42, 25, 17, 8, and 4 o.u. radii respectively), and also without confocal

pinhole. The term ’confocal’ has been kept in this last statement because the pinholes

were placed at the plane which was a conjugate of the spot of light that was focused

on the sample when an objective lens was used in the microscope. For this part of the

study, however, no objective lens was used in order to assess the isolated the effect of

the pinhole size on the polarimetry measurements. For each of the 6 configurations

(pinhole sizes), a pair of calibration matrices (W andA) were computed, and the sam-

ples were calibrated in two ways: using the matrices obtained with the same pinhole

that was used to measure the sample, and using only the matrices obtained from the

no-pinhole configuration. The two sets of calibrated Mueller matrices are shown in

Figs. 5.10 and 5.11.

The calibration samples were measured 13 times; the first ten measurements were used

to calibrate the system, and the last three were calibrated as an ordinary sample. The

other two samples were measured 5 times and then calibrated. All the measurements

were taken during the same day, using one configuration at a time, in the following

order: no-pinhole, 50, 30, 20, 10, and 5µm pinhole. Despite not having randomized

the order in which the different pinholes were used, 10 measurements of the sample

B0
dp were taken every time the pinhole was changed, to monitor the system stability.

These 4 measurements are also shown in Figs. 5.10 and 5.11, as the 4 red dots between

the bars of the sample "Air" (light blue).

Both figures, 5.10 and 5.11, show significant differences on the Mueller matrices of

some samples when measured with the different pinhole sizes, which were larger than

the experimental fluctuations indicated by the mirrormonitormeasurements (red dots).

The m21 coefficient of the polariser at 45◦ (magenta), for instance, decreased (the

magnitude increased) with the pinhole size. The retarder used for calibration (dark

blue) and the quarter wave-plate at 0◦ (gray) exhibited a similar behaviour, but the other

three samples, air and the two linear polarisers used for calibration, did not change

significantly when different pinholes were used. The exact source of these differences

was not identified, nevertheless, two important observations were made during the

experiment that can help to point towards a more complete investigation. The first

one is that, during the calibration routine, after each pinhole had been aligned when

no sample was in the system, the position of the focused spot on the pinhole plane
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Figure 5.10:Mueller matrices comparison using no pinhole and 5 different pinhole sizes. The four
calibration samples, a polariser at 45◦ and quarter-wave-plate at 0◦ were measured without pinhole
and with pinholes of diameter 50, 30, 20, 10, and 5µm, in that order. For each sample, the 6 bars are
ordered in the same way. The calibration matrices of the no-pinhole configuration were used to calibrate
all measurements.

changed when a sample was introduced, possibly due to the calibration sample not

having parallel front and back surfaces. The pinhole was realigned laterally to let

the maximum amount of light to go through, and this re-positioning might not have

been the same for all pinholes, the axial position of the pinhole was not modified.

The lateral re-positioning was never larger than half the diameter of the pinhole. The

second is that the retarder used for calibration seemed to have introduced the larger

amount of optical aberration. This was noticed from the interference pattern between

the light used for the measurement and the light reflected off the mirrorM2 in Fig.

5.16. The interference fringes looked like a saddle function, typical of astigmatism.

In the presence of aberrations, the lateral and axial position of the pinhole may have

probed different locations across the pupil. Hence, if any optical element introduced

6This mirror was always blocked while taking measurements, but it was used to cross-check the
alignment of the system.
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Figure 5.11:Mueller matrices comparison using no-pinhole and 5 different pinhole sizes. The four
calibration samples, a polariser at 45◦ and quarter-wave-plate at 0◦ were measured without pinhole and
with pinholes of diameter 50, 30, 20, 10, and 5µm. For each pinhole size a different pair of calibration
matrices was used: calibration with the same pinhole size.

polarisation inhomogeneities across the pupil, the polarimetry measurements could

have been different for different pinhole sizes or different pinhole positions.

A difference worth mentioning between the matrices calibrated without pinhole and

with the corresponding pinhole, appeared in the m33 coefficients ofB3
dp and the po-

lariser at 45◦. Figure 5.12 shows an enlargement of the m33 graphics in Figs. 5.10 and

5.11. When all the measurements were calibrated with the no-pinhole matrices (a),

these coefficient changed as a function of the pinhole size for the sampleB3
dp (dark

blue, "Ret 29.0"). When the calibration was made using theW andAdp calculated for

each pinhole size, the fluctuation was similar to the fluctuation of the mirrormonitor

measurements. For the polariser at 45◦, the opposite occurred; the values of m33 were

more alike when the matrices were calibrated with the no-pinholeW andAdp. In the

same pair of graphs, the values shown for the sixth sample, the quarter wave-plate, are

very similar for both types of calibration.
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Figure 5.12:Mueller matrices coefficients calibrated without pinhole and with the corresponding
pinhole: a) Extracted from Fig. 5.10 and b) extracted from Fig. 5.11.

The calibration routines for the different pinhole sizes resulted in different character-

izations of the calibration samples. It is suggested here that optical aberrations and

polarisation inhomogeneities of the optical elements may have been the cause of these

variations, and it was shown that there is a need of further research in this direction.

The calibration parameters calculated for each pinhole configuration are shown in Ta-

ble 5.2; these can be compared to the Table 4.3 presented in the evaluation of the

calibration in section 4.3.

NO ph 50 µm 30 µm 20 µm 10 µm 5 µm

cond(W) 1.11 1.08 1.10 1.11 1.14 1.09
cond(Adp) 1.53 1.55 1.58 1.56 1.60 1.56

eig(K)16/eig(K)15 0.09 0.07 0.08 0.13 0.17 0.14
∆3 (rad) -1.56 -1.56 -1.57 -1.54 -1.56 -1.56

Ψ3 0.73 0.72 0.71 0.66 0.63 0.65
θ1 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

θ2 90.7◦ 89.8◦ 90.2◦ 88.7◦ 88.5◦ 88.9◦

θ3 28.7◦ 28.3◦ 28.5◦ 27.8◦ 27.7◦ 28.3◦

Table 5.2: Parameters calculated during the DP-ECM using different pinhole sizes.
See Table 4.3 for an estimation of the standard deviation.

Two of the calibration parameters deserve special attention. The first is the calculated

diattenuation angleΨ3 of the retarder used for calibration, which showed a large de-

pendence on the pinhole size. For smaller pinholes, the diattenuation increased (i.e.Ψ3

departed fromπ/4). The second parameter is the ratio of the two smallest eigenval-

ues of the linear mappingK, which became larger as the pinhole size was decreased;
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5. Experimental setup II: Confocal Mueller matrix polarimeter

this means that the accuracy of the calibration became slightly poorer because the null

space ofK was not as uniquely defined as for larger pinholes or no pinhole. It should

be stressed here that these are preliminary results and that more experimental runs will

be necessary to arrive to definite conclusions.

Axial scan of the confocal pinhole

As was mentioned before, the objective lens (Obj1) was not used during the calibration

of the polarimeter, hence, any polarisation changes introduced by the lens were not

removed from the Mueller matrix axial scans presented previously. In those axial

scans, any polarisation changes introduced by the size of the confocal pinhole were

combined with the non-calibrated artefacts of the lens. To isolate the pinhole effects,

experiments were made moving the pinhole along the axis around the confocal region,

instead of the mirror. Figure 5.13 shows a schematic diagram of the configuration

of the system when scanning the pinhole without the objective lensObj1. A scan of

the 5µm confocal pinhole was also made with the objective lens (Obj1) inserted and

focusing the light on the surface of the mirrorMirror shown in Fig. 5.13.

Stop
Pinhole

Obj2

Mirror

Figure 5.13:Schematic diagram of the system used to make the axial scans of the pinhole.

The pinhole lateral position was estimated from the radial symmetry of the irradiance

pattern on a screen behind it. Due to the low N.A. of the system this positioning

was considered sufficiently accurate; the irradiance pattern was inspected by eye while

performing the axial scans and the radial symmetry appeared to be the same for all

axial positions. The results of the two pinhole axial scans are presented in Fig. 5.14,

with and without the objective lens. Both sets of Mueller matrices were calibrated

using measurements that were taken without the confocal pinhole inserted.

The results obtained with and without the objective lens were similar to those previ-

ously obtained when scanning the mirror. The FWHM of the scans were 71.1µm
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Figure 5.14: Mueller matrix axial scan of the 5µm confocal pinhole with (green triangles) and
without (purple circles) the objective lensObj1.

without Obj1, and 87.0µm with the objective lens. The value of 87.0µm is approx-

imately equal to 2 times the FWHM of the previously presented mirror scans: 43.8

µm (see section 5.1.2). The off-diagonal Mueller coefficients of these scans showed

similar shapes to those obtained when scanning the mirror. The Mueller matrices at

the intensity peak and at the edges of the FWHM were compared to the ideal identity

matrix, and the residualrmserrors obtained are shown in Table 5.3.

-FWHM/2 Peak + FWHM/2

Without Obj1 4.8% 2.1% 2.9%
With Obj1 5.3% 3.6% 3.8%

Table 5.3: Residualrmserrors of the axial scans of the pinhole in the reflection con-
figuration with and without the objective lens focusing the light on the surface of the
mirror.

The data in Table 5.3 is evidence that the pinhole can alter the Mueller matrix measure-

ments. Thermsvalues and the consistent shape of the off-diagonal Mueller coefficients
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5. Experimental setup II: Confocal Mueller matrix polarimeter

indicate that the pinhole effect may also be systematic. This graph also shows that the

effect of the objective lens was small, almost only reduced to the broadening of the ax-

ial PSF. A thorough study of the pinhole and lens effects will require a rigorous analysis

of the system combining polarisation ray tracing [113, 114] and the measurement of

the polarisation aberrations [115, 116] introduced by the optical elements, however,

this falls beyond the scope of this Thesis. In this study, the polarisation changes ob-

served on the off-diagonal elements of the pinhole scans were smaller than 5 and 8 %,

for the measurements without the lens and with the lens, respectively. These values

were calculated with respect to the maximum value obtained: in both cases, coefficient

Ph33 (see Fig. 5.14).

The results presented here indicate that the removal of the objective lens (Obj1) during

the calibration measurements was not the only origin of the polarisation artefacts ob-

served during the axial scans of the mirror. Additionally, the magnitude of this effect

was comparable to the magnitude of the polarisation changes introduced by the optical

sectioning of the confocal pinhole. Therefore, the calibration of the system without the

objective lens was a good compromise between accuracy and simplicity of the system.

5.2.2 Polarimeter in transmission

Another axial scan of the 5µm pinhole was made, this time with the polarimeter built

in transmission; see Fig. 3.13(c) for a schematic diagram. The collimated beam leaving

the PSG was focused by the lensObj2 on the pinhole plane and then collected by the

Obj3. The PSA was exactly the same as in the reflection configuration. Moving the

pinhole, axially through the focal region of theObj2, was equivalent to moving the

pinhole in the reflection configuration of the polarimeter, but the beamsplitter (Bs1)

and the mirror (Mirror) were no longer included in the optics; the rest of the system

was identical to the one described in subsection 5.2.1. Instead of the 633 nm third-

order quarter wave-plate, a 532 nm zero-order quarter wave-plate (Newport 10RP34-

532) was used as calibration sample. The accuracy and repeatability of the system

was tested using 6 calibration routines, and the results were better than those obtained

in the double-pass configuration (see Table 4.3): (accuracy)rmserror= 2.0% and

max. error= 3.7%; (repeatability)rmsσ = 0.7% and max.σ = 1.3%. The absence of

the beamsplitter (Bs1) may have been the cause of the improvement of the performance

of the system; Pezzaniti and Chipman have reported that beamsplitters can introduce

polarisation inhomogeneities [63].
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5. Experimental setup II: Confocal Mueller matrix polarimeter

Quarter wave-plate at different azimuth orientations

The performance of thetransmissionpolarimeter was also tested by measuring a zero-

order quarter wave-plate of the same specifications than the one used for its calibration

(Newport 10RP34-532). The wave-plate was oriented at every 5◦ between 0◦ and

355◦; the order of the orientation angles was not randomized and the measurements

were taken without a pinhole in the system. The Mueller matrices are shown in Fig.

5.15, and the total retardance and the angle of the linear retardance computed from the

Mueller matrices are shown in Fig. 5.16.
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Figure 5.15:Mueller matrices of a zero-order quarter wave-plate at different azimuth orientations,
measured with thetransmissionpolarimeter. The red circles are the average of two sets of measure-
ments, and the green curves represent the Mueller matrices of an ideal quarter wave-plate.

The differences between the ideal quarter wave-plate Mueller matrix elements and the

experimentally measured values were smaller than 8.9% of the measured transmittance

(0.988±0.003). The measured average retardance of all the different orientations was

0.249λ ± 0.006λ ; this value matched the wave-plate’s specifications (0.25λ ) within

the manufacturer’s nominal tolerance (±0.003λ ).
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Figure 5.16:Total retardance and azimuth angle of linear retardance calculated from the experimental
Mueller matrices in Fig. 5.15, using Lu’s polar decomposition [60]. The error bars of the angle of linear
retardance are smaller than the marker size.

Axial scan of the pinhole

The axially resolved Mueller matrices of the pinhole scan are presented in Fig. 5.17.

When comparing the measurements to the identity matrix, the residualrmserror at the

intensity peak of the scan wasrmserror= 2.4%, only 0.4% larger than without the

pinhole. At the edges of the FWHM, however, the residualrmswas: 4.4% at one, and

3.7% at the other. The FWHM was equal to 78.8µm and the peak intensity was 87%

of the intensity measured without the pinhole.

The polarimeter in transmission was simpler than the system in reflection configura-

tion. The axial response of the confocal optics showed that the off-diagonal Mueller

coefficients were comparable to those obtained in the reflection configuration. The

calibration of thetransmissionpolarimeter did not require the removal of any optical

element either, and the scan presented in Fig. 5.17 confirms that the pinhole sectioning

was responsible for the Mueller matrix artefacts that were also shown in the mirror

scans: Figs. 5.7 and 5.8. The normalised Mueller matrix at the axial position of max-

imum intensity is shown in Eq. 5.1, and the parameters calculated using Lu’s polar

decomposition are presented in Table 5.4.
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5. Experimental setup II: Confocal Mueller matrix polarimeter
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Figure 5.17:Mueller matrix axial scan of the 5µm confocal pinhole using thetransmissionpolarime-
ter. Data was calibrated from measurements that did not include a pinhole.

PhScanMAX =


1 0.0086 0.003 0.0022

0.0086 1.0091 −0.004 0.0491

0.028 0.0152 1.0367 −0.003

0.0083 −0.0341 0.052 1

±


0.6 0.6 1.6 0.1

0.2 0.3 1.2 0.5

1.3 0.4 0.4 2.0

0.7 0.4 2.8 0.2

×10−3.

(5.1)

In the transmission and reflection configurations of the polarimeter, the effect of the

confocal pinhole was statistically significant in the light of the accuracy and repeata-

bility of the measurements. However, the residualrms error between the measured

Mueller matrix at the intensity peak and the idealized identity matrix was comparable

to the maximumrmserror that was obtained during the accuracy tests. For a reliable

experimental investigation of the precise origin of the axial polarisation "artefacts" pre-

sented in this section, the accuracy of the polarimeter needs to be improved, neverthe-

less, this work has shown that the pinhole size has an observable effect on the Mueller

matrix measurements. And this should not be overlooked when taking polarisation-
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5. Experimental setup II: Confocal Mueller matrix polarimeter

mean σ

Transmittance 0.8703 0.0005

Diattenuation 0.009 0.001
Diatt. vector [8.6 , 2.7 , 2.2]T ×10−3 [0.6 , 1.9 , 0.1]T ×10−3

Retardance 8.1×10−3λ 0.3×10−3λ

Ret. vector [-5.3 , -8.2 , -1.9]T ×10−1 [0.3 , 0.3 , 0.1]T ×10−1

Linear ret. azimuth −61◦ 1◦

Polarisance 3.0×10−2 0.2×10−2

Pol. vector [0.9 , 2.8 , 0.8]T ×10−2 [0.02 , 0.2 , 0.1]T ×10−2

Table 5.4: Lu’s Mueller matrix polar decomposition of the peak position of the axial
scan in Fig. 5.17.

sensitive measurements using confocal or fibre coupled imaging systems, because it

can affect the accuracy of the results. Microscopes with higher numerical apertures

or with larger aberrations may show a larger dependence on the pinhole size, but this

remains to be investigated further. The numerical aperture used in this Thesis (N.A. =

0.14) was small because it was meant to match the numerical aperture of the human

eye, and the polarisation "artefacts" measured here did not degrade the polarimetry

measurements much more than the measured experimental errors. In the next chapter,

the first measurements of complete depth-resolved polarisation-sensitive imaging will

be presented, accompanied by a quantitative analysis.
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6 Depth-resolved

polarisation sensitive

measurements

After the mirror axial scans, the following depth-resolved complete polarisation sen-

sitive measurements were taken from an artificially built sample. The sample was

measured using thedoubletsand thetriplets polarimeters, and, despite having shown

that the performance of thedoubletsconfocal polarimeter was poor (see section 5.1.1),

both results are presented in this chapter for comparison. The analysis, however, was

only made for the results obtained with thetriplets-polarimeter. Section 6.1 intro-

duces a first time achievement: the set of axially resolved complete Mueller matrices

of a sample. In sections 6.2 and 6.3, the results obtained with thetriplets-polarimeter

are used as an example to describe the basic characteristics of the forward and inverse

problems, respectively.

6.1 Experimental results

A stack of three linear 560 nm quarter wave-plates, made of cellulose acetate butyrate

(Edmund Scientific N53-205), was placed between two microscope glass slides as is

shown in Fig. 6.1. The two outer retarders of the stack were oriented at approximately

0◦, and the middle retarder at 45◦. This orientation was not extremely accurate, but

this should not be of concern for the results presented here. The shape of the two outer

retarders was a parallelogram with the longer sides cut along their fast axis, both from
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6. Depth-resolved polarisation sensitive measurements

the same acetate sheet; and the inner retarder was cut at approximately−45◦ with

respect to the fast axis. The long sides of the three retarders were then aligned against

a flat surface before being mounted between the glass plates. The elements of the stack

were not cemented; they were kept together by pressing the two glass slides against

each other. No mechanical mount was used to fine-tune the azimuth alignment of the

retarders, but once placed on the holder, the angle did not change. The exact azimuth

angles were calculated from the experimental Mueller matrices as will be explained

later in this section.

(a)

2. λ/4 @ 560  Fast axis  0
o

1. Glass plate
  A

  B

  C
  D

  E

  F
5. Glass plate4. λ/4 @ 560  Fast axis  0

o

3. λ/4 @ 560nm  Fast axis  45o

(b)

Figure 6.1:The stack of retarders between two microscope glass slides that was measured with the
confocal Mueller matrix polarimeter. The axial position was changed using the micrometer screw that
appears in the picture (a).

The calibration measurements were taken with the confocal pinhole inserted in the sys-

tem and without the objective lensObj1. It was mentioned in the previous chapter, that

the removal of the objectiveObj1, during the calibration of thetriplets-polarimeter,

introduced an error no larger than 3%, in the off-diagonal Mueller matrix coefficients

of the axial scan of the confocal pinhole. For the purpose of this study, this systematic

error was considered small, therefore, it was not removed from all the measurements

presented in this chapter. At the end of this Thesis, suggestions on how to overcome

this source of error are mentioned.

The stack of retarders was moved along the optical axis, using a manual micrometer

screw (Linos 061162) that had a smallest scale division of 10µm, mounted as it appears

in Fig. 6.1(a). The sample was being moved towards the objective lens (Obj1) while

measurements were taken every 10µm. The calibrated measurements are presented

in Fig. 6.2, where the peaks in the graph of coefficientretStack11, labeledA, B, C,

D, E, andF, correspond to the position of the interfaces between the elements of the

stack (see also Fig. 6.1(b)). Three measurements were taken at each axial position and

then averaged; the standard deviation of the three measurements at each position was
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6. Depth-resolved polarisation sensitive measurements

always smaller than the marker size in the plots.
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Figure 6.2: Axial scan of the stack of retarders using a 5µm confocal pinhole in thetriplets-
polarimeter

The intensity peaks on Fig. 6.2 correspond to the following interfaces:A, the front

surface of the front glass plate;B, the back surface of the front glass plate and front

surface of the 1st retarder;C, the back surface of the 1st retarder and front surface of

the 2nd retarder;D, the back surface of the 2nd retarder and front surface of the 3rd

retarder;E, the back surface of the 3rd retarder and front surface of the back glass plate;

F, the back surface of the back glass plate. Given the transparency of the sample, the

signal from the axial positions between the interfaces was negligible for experimental

purposes; hence, the attention was focused only on the measurements taken from the 6

interfaces.

The Mueller coefficientretStack11 represents the reflectance of the sample for non-

polarised light. The height of the peaks on this graph, however, may have also been

affected by the tilt of the 6 different surfaces of the sample, which may not have been

the same for all of them. Manufacturing defects or air gaps between the components of
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6. Depth-resolved polarisation sensitive measurements

the stack could have been the cause of this tilt. Additionally, interference between mul-

tiple reflections from the different surfaces may also have had an effect on the measure-

ments: e.g. the width of peakE and the two small peaks (axial positions 1.40 and 1.59

mm) between theE andF maxima. See the enlarged graph of coefficientretStack11 in

Fig. 6.3. As a first approximation, aberrations introduced by focusing the light through

interfaces of different refractive indices were not taken into account [117]. The axial

positions of the 6 main reflectance peaks and the corresponding FWHM values are

presented in Table 6.1.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.01
0
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0.07

retStack11

scan using a 5 µm pinhole

A B

C

D

E F

Axial position in mm

Figure 6.3:Enlargement of the graph of coefficientretStack11 in Fig. 6.2.

Interface Peak axial position (mm) FWHM (µm)

A 0.00 41.7
B 0.59 44.3
C 0.80 51.5
D 1.00 45.5
E 1.21 65.3
F 1.80 44.1

Table 6.1: Axial position of the peak and FWHM value at the interfaces of the retarder
stack, as measured with the confocal Mueller matrix polarimeter

The axial Mueller matrix of the same sample was also measured with thedoublets-

polarimeter, and the results are shown in Fig. 6.4. The relative magnitudes between the

peaks of coefficientstack11, measured from the different interfaces, are not the same as

in the scan presented above (triplets-polarimeter). Nevertheless, the 6 peaks are clearly

distinguishable, and also, the two glass plates appear thicker than the three retarders.

The two small peaks between theE andF maxima are present in this scan as well, and
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6. Depth-resolved polarisation sensitive measurements

the overall thickness of the sample: 1.81 mm (the axial distance betweenA andF), was

only ten microns larger than with thetriplets version of the system. Several features

are common to both scans. The ratio of the Mueller coefficients of the interfacesA and

B was approximately the same for the 16 different pairs on the measurements obtained

with the two systems. This means that, disregarding the difference in transmittance of

the two Mueller matrices (interfacesA andB), the rest of the polarimetry information

was approximately the same for the two interfaces. On the contrary, if the Mueller

matrices of the interfacesB andC, for example, are compared, it is visibly clear that

the polarimetry information was not equal. That is, the contrast between some of

the other Mueller coefficients of the two interfaces is not comparable to the contrast

between the transmittance coefficient of the same two surfaces. See for example the

values at interfacesB andC of coefficientsretStack33 andstack33 in Figs. 6.2 and 6.4,

respectively.
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Figure 6.4: Axial scan of the stack of retarders using a 50µm confocal pinhole in thedoublets-
polarimeter.

The Mueller matrices of the scan obtained with thedoublets-polarimeterwere not
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6. Depth-resolved polarisation sensitive measurements

analysed further; the lenses introduced polarisation artefacts that affected the measure-

ments (see section 5.1.1). Attention was focused only on the results of thetriplets-

polarimeter, and they are presented in the following section. In this Thesis, they are

used as an example to introduce the forward simulation problem, by comparing them

with analytically built matrices.

6.2 Forward simulation

The experimental results used in this section were obtained with thetriplets-polarimeter;

they were the Mueller matrices, presented in Fig. 6.2, that corresponded to the inter-

facesA, B, C, D, E, andF. In an attempt to eliminate calibration artefacts derived from

errors in the axial position of the pinhole, the stack Mueller matrices of the 3 axial

positions with highest signal were used to represent each interface. For example, the

Mueller matrices of positions 0.58, 0.59, and 0.60 mm were used to represent the in-

terfaceB. Except for the interfaceA, the middle axial position corresponded always to

the local maximum signal of the measurement of the interface. The three matrices of

each interface were first normalised to unit reflectance for non-polarised light (coeffi-

cient retStack11), and then averaged. The root-mean-square values of the 16 standard

deviations of each surface were only slightly larger than those obtained in the repeata-

bility tests (section 4.3):A, 1.5%; B, 1.5%; C, 5.4%; D, 2.5%; E, 3.6%; F, 1.9%. The

final, normalised, matrices are shown in Table 6.2, together with the simulated ma-

trices at each interface and therms error of the difference between the experimental

matrices and the simulated ones. The measured reflectance, the peak at each interface,

(τ) is also included in Table 6.2. This normalisation removed the information that

could have been obtained with a conventional confocal microscope from the rest of

the polarisation information, hence, it emphasised the relevance of the technique when

measuring samples where simple reflectance (or transmittance) contrast between the

different layers may not be sufficient to distinguish one from each other.

The simulated Mueller matrices were only fitted to the azimuth orientations of the

three linear retarders within the stack. The azimuth angles were found numerically

by minimising therms of the difference between the experimental and the simulated

matrices; the figure in thermscolumn of Table 6.2 is the value of the minimumrms

for each interface.

The first two simulated interfaces (A andB) were assumed to be equal to the identity

matrix, in agreement with the choice of coordinate system for the representation of the
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Interfaces Exp. Mueller matrices Simulated (fitted) rms

A

τ = 3.4%


1 0.01 0.02 −0.01

0.03 1.03 −0.01 −0.07
−0.01 0.05 1.04 −0.04
0.00 0.06 −0.04 1.00




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 3.4%

B

τ = 3.6%


1 0.01 −0.07 −0.01

0.03 1.03 0.02 −0.10
−0.09 0.01 1.05 0.00
0.01 0.08 −0.04 1.03




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 4.8%

C

τ = 0.9%
θ1 =−5.0◦


1 −0.14 0.01 0.06

−0.10 0.93 −0.29 −0.17
−0.03 −0.30 −0.71 −0.34
−0.07 0.16 0.34 −0.82




1 0 0 0
0 0.94 −0.34 −0.03
0 −0.34 −0.93 −0.16
0 0.03 0.16 −0.99

 11.6%

D
τ = 4.4%

θ1 =−5.0◦

θ2 = 43.9◦


1 0.00 −0.09 0.01

−0.01 −0.96 0.17 −0.30
−0.09 0.17 1.00 0.03
−0.02 0.27 0.00 −0.96




1 0 0 0
0 −0.94 0.20 −0.28
0 0.20 0.98 0.03
0 0.28 −0.03 −0.96

 3.6%

E
τ = 1.1%

θ1 =−5.0◦

θ2 = 43.9◦

θ3 =−5.3◦


1 −0.04 −0.01 −0.02

−0.01 1.00 0.01 0.07
−0.05 0.04 0.98 −0.20
0.03 −0.08 0.09 0.92




1 0 0 0
0 0.99 0.01 0.10
0 0.01 0.99 −0.16
0 −0.10 0.16 0.98

 3.3%

F
τ = 1.6%

θ1 =−5.0◦

θ2 = 43.9◦

θ3 =−5.3◦


1 0.01 −0.06 −0.01

0.05 1.05 −0.01 0.04
−0.11 0.06 1.05 −0.15
0.02 −0.06 0.08 1.03




1 0 0 0
0 0.99 0.01 0.10
0 0.01 0.99 −0.16
0 −0.10 0.16 0.98

 5.1%

Table 6.2: The calibrated Mueller matrices of the interfaces in Fig 4.3 vs the fitted
analytical matrices. See section 4.3 for an estimate of the standard deviation of the
experimental matrices.

double-pass measurements (see section 4.2). The incidence of the light on the glass

plate interfaces was approximately perpendicular, and no phase shift was expected

from the reflection on the dielectric surfaces. Therms of the difference between the

identity matrix and the normalised experimental matrices ofA andB were 3.4% and

4.8%, respectively.
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The simulated Mueller matrices of the rest of the interfacesC, D, E, andF, were cal-

culated using a retardance of 560 nm/4 = 140 nm for each pass through the plastic

retarderWp. The simulated double-pass Mueller matrix of interfaceC, as a function

of the azimuth angle of the front retarder (θ1), was

Cdp(θ1) = Mirror ·Rot(−θ1) ·Wp ·Rot(θ1) ·Mirror ·Rot(θ1) ·Wp ·Rot(−θ1).
(6.1)

The mirror matrix that appears on the left of the equation ensured that the azimuth of

the double-pass matrix was measured in the coordinate system of the first pass, and

the mirror matrix in the middle part of the equation separated the firs-pass from the

second-pass. It was assumed in Eq. 6.1 that the behaviour of the retarder was the same

in the forward and the backward propagation. The sign of the azimuth orientation of

the second pass was the opposite to the sign of the angle of the first pass. The azimuth

angle of the simulated sample was found numerically as the angle that minimized the

rms function

rmsC(θ1) = rms(Cdp
exp−Cdp(θ1)), (6.2)

which was calculated using the 16 Mueller matrix coefficients. A graph of rmsC(θ1) is

shown in Fig. 6.5(a), where the angleθ1 =−5.0◦ is indicated by a vertical line. Note

that this is the same value that appears in Table 6.2.

Onceθ1 was found, the same procedure was used to calculateθ2 = 43.9◦ using the

azimuth of the experimental Mueller matrix of interfaceD, keepingθ1 constant and

using

Ddp(θ2) =Mirror ·C−

·Rot(−θ2) ·Wp ·Rot(θ2) ·Mirror ·Rot(θ2) ·Wp ·Rot(−θ2) ·C+.
(6.3)

And subsequently minimising thermserror between the simulated and the experimen-

tal matrix. In Eq. 6.3,C+ and C− are the simulated matrices of the first and the

second pass through the first retarder in the stack. The letter stresses the relation of

this retarder with the measurements from interface C.

Finally,θ3 was found using the experimental Mueller matrix of the interface E, keeping

θ1 andθ2 fixed, and using an equation similar to Eq. 6.3. Figures 6.5 (b) and (c), below,

contain the graphs of the residualrmsfunctions for the matrices at the interfacesD and
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E, respectively.
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Figure 6.5: Root-mean-square of the difference between the experimental Mueller matrices of the
interfacesC, D, andE, and the corresponding simulated matrices, as a function of the orientation (θ1,
θ2, andθ3) used in the simulations.

No account of the axial component of the electric vector, introduced by the focusing

of the light, was made in this forward simulation, and the retarders were assumed

to introduce the exact retardance specified by the manufacturer. This simple model

showed a good agreement with the experimental results, as can be seen from Table 6.2.

For systems with larger numerical apertures, however, the effect of the axial component

may need to be taken into account.

In addition to thermsvalues shown in Table 6.2, Lu’s polar decomposition [60] was

performed on all the experimental and simulated matrices; the calculated retardance

and angle of linear retardance (azimuth) are presented in Fig. 6.6. The shaded area in

Fig. 6.6(b) is a reminder that the simulated angle of linear retardance of interfacesA

andB was undefined; since both interfaces were ideally represented by the identity ma-

trix, the retardance was equal to zero. However, the retardance vector was normalised

to unity before calculating the angle of linear retardance, and the experimental results

for A andB in Fig. 6.6(b) were also included. Only the retardance value of the inter-

face C was statistically different than the simulated value. It is worth to note that the

signal recorded from this interface was the smallest of the 6 interfaces.

The angle of linear retardance was calculated using the first two components of the

retardance vector of each Mueller matrix [54]. The three component of the normalised

retardance vectors of the 6 interfaces are shown in Fig. 6.7. The contrast between the

interfaces depends on the polarisation parameter used to compare them. The contrast

between interfacesC andD does not appear significant in the retardance graphic; the

contrast on angle of linear retardance, on the contrary, not only can show that the

sample had a polarisation signature betweenC andD, but it is a quantitative parameter

to distinguish between the two interfaces. Furthermore, if only theS1 component of
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Figure 6.6:(a) Total retardance and (b) angle of linear retardance of the experimental (green triangles)
and simulated (blue squares) Mueller matrices of the interfaces.

the retardance vector is used to compare them, the contrast is even higher (see Fig.

6.7(a)).
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Figure 6.7: Normalised retardance vector components of the Mueller matrix of the interfaces on
the Stokes representation (a)S1 (horizontal and vertical), (b)S2 (45◦ and−45◦), (c) S3 (right and left
circular).

The depolarisation power at the interfaces was also calculated, and the values were

small; the largest value obtained was 0.09±0.03 for the interfaceD. The only scatter-

ing sample measured in this Thesis was a preliminary test on a piece of white paper for

which the depolarisation power was 0.513±0.003. The measurements taken from the

stack of retarders were specular reflections from the interfaces and no depolarisation

was expected, which agreed with the results obtained.

As a first approximation, the forward simulation presented here agreed well with the

experimental results. This work shows for the first time that it is possible to obtain con-

focal depth-resolved complete-polarisation-sensitive measurements. More work needs

to be done towards the extension of the technique to systems with higher numerical
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apertures, and the effect of the confocal system on the polarimetry lateral resolution

remains to be studied. This will also be mentioned in the last chapter of this The-

sis. The results presented here show that it is possible to obtain a Mueller matrix

of a sample at different depths using a confocal polarimeter. Contrary to results that

have been reported using polarisation-sensitive OCT systems [50], where the mea-

surement of Mueller matrices and Stokes vectors at different depths has been reported

[45, 46, 10, 47], in this work, the 16 elements of the Mueller matrix were really mea-

sured independently. This means that the measurements presented here were not Jones

matrices converted to Mueller matrices; they were complete Mueller matrices which

can include the depolarisation information. This constitutes a first time achievement

and is the central part of this Thesis.

6.3 Description of the inverse problem

Equation 6.3 is an example that contains the main properties of any depth-resolved

Mueller matrix measurement. This equation represents the effect on polarisation that

the stack of retarders introduced when a beam of light passed through the first glass-

plate, then the first retarder (atθ1), then the second retarder (atθ2), and then was

reflected at interfaceD, before propagating back, through the same elements, in the

opposite direction1.

The Mueller matrix obtained from interface D contained the information of the cumu-

lative double-pass effect of the first and second retarders of the stack. Previous to the

acquisition of the Mueller matrix from interface D, the Mueller matrix from interface

C was measured, and in this first measurement, only the effect of the first retarder

was contained, also in double-pass. The solution of the inverse problem, for this case,

should consist on identifying what are the 4 Mueller matrices that represent the ef-

fect of each of the 4 passes of light through the two retarders in the forward and the

backward propagation: the first and the second pass. In the most rigorous sense, the

solution of this problem is under-determined; there are 4 unknown matrices and only

2 are known. And if anN number of layers is measured, the solution would require

2N matrices. Clearly, some assumptions will need to be made when interpreting the

double-pass data.

Until the date of writing this Thesis, this inverse problem had not been addressed in

1In the forward analysis, it was assumed that the glass plates did not introduce changes in the state
of polarisation.
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the literature. Some studies, however, have analysed the propagation of completely

polarised light through layered birefringent media [118] and layered birefringent turbid

media [119]. The N-matrices, which refer to the effect, on the polarisation of light,

of an infinitesimal path length within an optical element, were introduced in 1948

by R. Clark Jones [120], in the light of the Jones calculus: for completely polarised

light. And Jones’s work was extended by Azzam in 1978 [121]. Azzam developed a

differential 4× 4 matrix calculus to describe the continuous propagation of partially

polarised light through linear anisotropic media that may exhibit depolarisation. If

the depth resolved Mueller matrix measurements were made sufficiently close to each

other, Azzam’s work could be a good starting point to deal with this inverse problem.

Despite not having covered that in this Thesis, some general observations concerning

double-pass measurements are presented in the following paragraphs which may be of

help for future investigations.

Forward and backward propagation

The propagation through an optical element or a sample should not be assumed, in gen-

eral, to be the same in the first than in the second pass. If the depth resolution of the

system used to obtain the Mueller matrices of a sample is not sufficiently high, layers

with different polarisation properties may be measured as a single layer. Mueller ma-

trices are not commutative and, evidently, the combination of two layers that introduce

different effect on polarisation may not be the same when the order of the matrices (the

layers in this case) is interchanged.

Ideal polariser

If the front layer of a sample was an ideal linear polariser, much of the information

about the polarisation properties of the posterior (deeper) layers would be lost when

using a reflection configuration. Light returning from the sample would always be lin-

early polarised, and the polarisation effect of the posterior layers would be projected

as a mere intensity fluctuation of the returning linearly polarised light, i.e. as an effect

on the first component of the Stokes vector. Nevertheless, a polarisation sensitive de-

vice would still be advantageous over a conventional imaging system (intensity and/or

phase) in this case, because the front layer would be identified as a polariser, and any

intensity fluctuations would not necessarily be associated with reflectivity fluctuations.

Moreover, encountering an ideal linear polariser in biological samples would perhaps

constitute a more important scientific achievement than the study of what remained
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deeper in the sample.

Circular retarder

An ideal circular retarder that is not a Faraday rotator [53] would appear as a homoge-

neous medium if measured alone in double-pass. The effect of such a rotator should be

the same in the forward than in the backward propagation, but for light that propagates

in double-pass, the effect of the circular retarder in the second-pass would cancel the

rotation of the first-pass, due to the change of the co-ordinate system that the reflection

between the first and the second pass produces. During the measurement of a deeper

layer, however, the role of the rotator would have an effect on the polarimetry mea-

surement, because in this case the two optical rotations would not be separated only

by a reflection, and the effect of the deeper layer may not necessarily commute with

either rotations.

Depolarisation produced by scattering

In a reflection confocal microscope, the light that returns to the system from a layer

within a scattering sample (e.g. some type biological tissue) and is detected, can be

depolarised by the scattering process itself. But when a deeper layer is measured it

will be blocked (or almost blocked) by the confocal aperture, although some light will

still be scattered at the front layer. Hence, the depolarisation produced by scattering

that will be measured from the deeper layer will be independent (or almost indepen-

dent) of the depolarisation measured from the front layer. That is, the depolarisation

produced by scattering will not have a linear cumulative effect throughout the depth of

the sample.

The scenarios presented above are ideas of some of the difficulties that future investi-

gations may encounter while attempting to solve this inverse problem, or while estab-

lishing the circumstances under which a solution might exist. It may be important to

note that even if such a solution does not exist in the practical sense, some polarisation

parameters may still provide valuable information about the measured sample. If the

depolarisation produced by scattering is indeed independent at the different depths, for

example, one additional imaging dimension will be gained with this technique that no

other existing three-dimensional imaging technique has yet reported. Additionally, the

elaboration of statistical models (e.g. using principal component analysis) of combi-

nations of the depth resolved polarisation properties of a sample, may lead to a better

understanding of its nature and to the possible identification of anomalies, perhaps like
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diseases of biological samples
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7 Conclusions

For the first time, a combination of a depth resolved imaging technique with a complete

Mueller matrix polarimeter was introduced. A confocal microscope within a complete

Mueller matrix polarimeter was designed and built. The system was used to measure

the complete Mueller matrices at different depths of a non-biological sample: a stack

of glass plates and retarders. This work has shown that it is possible to measure the

complete Mueller matrix of a sample at different axial positions, and therefore, in the

three spatial dimensions.

This chapter is divided in two parts. First, a summary of the tasks accomplished during

this work is presented. At the end, topics derived from this work, that remained without

investigation, will be described as a proposal for future research.

7.1 Summary and conclusions

7.1.1 The Mueller matrix polarimeter

The Mueller matrix polarimeter built in this work used two Pockels cells as linear

variable retarders in the PSG, and a division-of-amplitude-polarimeter as PSA. This

combination did not involve any moving parts in the system, and the speed of the

measurements was only limited by the light detection time. In the experimental system

the analogue to digital card was the speed limiting factor. The acquisition time for

a complete Mueller matrix was 51.2 milliseconds. This speed was around 20 times

faster than for some polarimeters that have been reported [67, 72, 65, 73], and can

still be increased if a faster analogue to digital card is added, provided photon noise

is not a limitation. The original choice of the card was made based on low cost and

ease of implementation only, and for the purpose of this study, the acquisition rate
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obtained was adequate. In some future applications of the system, the short acquisition

time could significantly degrade the signal-to-noise ratio of the measured signals. This

might be a serious issue for ophthalmic applications, for instance, due to the corneal

maximum permissible exposure to light [92] and the low reflectance of the retina [122].

Nevertheless, the device has to be fast to minimise errors introduced by the unavoidable

motion of the eye. Furthermore, the device has been designed to avoid any waste of

photons. As a result, even though it is still early to state that the polarimeter will exhibit

an adequate SNR for ophthalmology applications, its design is one of the best possible

to this end.

The condition numbers of the PSG and PSA were
√

2 and 3.61, respectively. These

numbers reflected how linearly independent were the states of polarisation generated

with the PSG, and the states of polarisation detected with the PSA. However, they

did not reflect the sensitivity of the system to random experimental errors, that were

reduced by taking a large number of redundant measurements. Also, these condition

numbers did not include information of the compatibility of the PSA and the PSG. With

the particular ramp retardance modulation implemented on the Pockels cells, the full

Mueller matrix of any sample was contained in 24 Fourier series coefficients (6 for each

detector of the PSA). According to the mathematical model, the rest of the harmonic

coefficients were zero. This means that no information was discarded by truncating

the Fourier series of the intensity signals, which may have favored the performance of

the system by decreasing its sensitivity to random errors. A more realistic evaluation

of the Mueller matrix polarimeter was presented, that implicitly took into account the

combination of the PSG and PSA. The condition number of the matrixQ that related

the 6 non-zero Fourier coefficients to the Stokes vector used to illuminate the sample

was equal to
√

2. The two parameters introduced by Sabatkeet al. [12], for the PSG

built here, were RADQ = 2, and EWVQ = 6 (see section 3.3.1). These two later values

were slightly larger than those calculated for the optimal tetrahedron configuration that

uses 4 measurements [77]. The condition number ofQ, on the other hand, was better

than for the tetrahedron matrix. The individual figures of merit should not be used

as the only parameter to compare the design of different Stokes or Mueller matrix

polarimeters, however, they are extremely valuable in the optimisation process of a

particular system.

The double-pass eigenvalue calibration method (DP-ECM) was developed, as a modi-

fication of the original ECM previously published by Compainet al. [11]. Its accuracy

and repeatability were evaluated for the polarimeter built. Therms of the standard

deviation of the Mueller matrix coefficients was smaller than 1.5%, and the residual
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rms error between the experimental and the analytical Mueller matrices of 6 different

samples was smaller than 2.6%. A variant of the DP-ECM was also described, that

allows the calibration of the double-pass polarimeter to be made on a different optical

branch than the one used to measure a sample; it was called two-branch DP-ECM.

The time stability of the system was tested on four samples over a period of two hours

for each of them, and the typical standard deviation found on a single Mueller matrix

coefficient was smaller than 1%.

7.1.2 The confocal microscope

Two versions of the confocal system were built: one that used non-ring-mounted dou-

blet lenses and one that used ring-mounted triplets. Using the radius of curvature, re-

fractive index, and separation between surfaces of the optical elements, a Zemax model

was made for each version of the system. Two different pinhole sizes were used in each

case. The experimental Mueller matrix axial response of each configuration was mea-

sured scanning a mirror, axially around the focal region of the objective lensObj1. The

results agreed with the corresponding Zemax model. The axial FWHM ofdoublets-

polarimeterwas 30.3µm with the 25µm pinhole. For the triplets-polarimeter, the

FWHM was 43.8µm when a 5µm pinhole was used.

7.1.3 The confocal Mueller matrix polarimeter

Polarisation artefacts of lenses

A complete Mueller matrix was measured, with the confocal system, at different ax-

ial positions of a dielectric mirror. The objective lens was not included in the cal-

ibration. The Mueller matrices obtained with thedoublets-polarimetershowed an

unexpected retardance of approximately 0.5 radians that was not measured with the

triplets-polarimeter1. It was found that when looking at the doublet lenses between two

crossed linear polarisers, extinction of the light could not be observed, specially at the

points of contact between the mechanical mount and the edges of the lens. The exact

origin of this effect was not identified but when the screw that maintained a lens fixed

to the mechanical mount was tightened slightly more, a larger transmission through

the crossed polarisers was observed, i.e. the artefact was larger. For this reason, it was

hypothesised that the effect was a manifestation of strain induced birefringence. This

1The namesdoublets-polarimeterandtriplets-polarimeterare used here only as identifiers, and the
results should not be considered as a general distinction between doublet and triplet lenses.
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artefact was larger at regions closer to the tightening screws, however, under visual

inspection it appeared rather homogeneous across the the pupil area used in the exper-

iment; this might explain why the residual birefringence measured was similar when

different confocal pinhole sizes were used. The lenses of the system were changed

and thetriplets-polarimeterwas built. The triplets lenses had been glued into ring-

mounts by the manufacturer. When looking at the triplets between crossed polarisers,

the extinction was the same than when looking only at the two crossed polarisers.

Pinhole of the confocal Mueller matrix polarimeter

Experiments were made to assess the effect of the confocal pinhole in the polarimetry

measurements. Six different samples were measured, in double-pass, using 5 different

pinhole sizes and also without a pinhole. In general, the Mueller matrices of the sam-

ples were statistically different for the different pinhole sizes, and this indicated that

the confocal pinhole can affect the polarimetry measurements. It was suggested that

this effect may be even larger in the presence of aberrations and polarisation inhomo-

geneities in the optical elements.

The effect of the pinhole was also investigated performing axial scans of the pinhole

instead of the dielectric mirror. The axial response of the confocal system was mim-

icked without the objective lensObj1, to separate the effect of the pinhole from the

lens artefacts, which could not be removed in the calibration. The Mueller matrices

at the intensity peak and the edges of the FWHM were compared to the ideal identity

matrix, and the residualrmserrors obtained were 2.1% at the peak, 4.8% at one edge,

and 2.9% at the other edge. Thermsvalue at the peak was inside the accuracy range

of the polarimeter, but not the values at the edges of the FWHM. This constituted ev-

idence that the confocal pinhole had an effect on the polarimetry measurements. The

axial scan of the pinhole was also made with the objective lens in the system, focusing

the light on the surface of a dielectric mirror. The residualrmserrors obtained with the

lens were: 3.6% at the peak, 5.3% at one edge, and 3.8% at the other edge. Therefore,

it was estimated that the error introduced in the system by removing the objective lens

during the calibration was of the order of 1.5%.

A further study of the effect of the pinhole was made using a polarimeter in trans-

mission. The system was built and the accuracy and repeatability of this system was

tested. The repeatability obtained wasrmsσ = 0.7%, and the accuracy measured was

rms error = 2.0%. The performance of this system was better than the reflection po-

larimeter, possibly because the beamsplitterBs1 was removed. A 5µm pinhole was
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axially scanned around the focal region of the objective lens, thus mimicking the ax-

ial response of the confocal microscope. The residualrmserror between the Mueller

matrix at the intensity peak and the identity matrix was 2.4%, and at the edges of the

FWHM was 4.4% and 3.7%. The results confirmed that the pinhole introduced an

error in the polarimetry measurements. As in the case of the reflection configuration,

the effect of the pinhole was significant at the edges of the FWHM, but not at the axial

position of the intensity peak.

7.1.4 Depth-resolved Mueller matrix experimental results

The Mueller matrices at different depths of a stack of retarders were measured. This

is the first time that the complete polarisation effect of a sample has been measured at

different axial positions. A forward simulation of the experimental measurements of

the 6 surfaces of stack was made. The nominal retardance of the three acetate retarders

was used, and their azimuth orientation was fitted to compensate for the errors in the

experimental alignment. The maximum residualrmserror between the simulated and

the experimental Mueller matrices was 11.6%; however, this value was obtained only

from one interface, and the rest of the residualrmserrors were not larger than 5.1%.

Lu’s Mueller matrix polar decomposition [60] was used to calculate the retardance, re-

tardance vector, and depolarisation power of the simulated and experimental matrices.

The depolarisation power was very small for all surfaces, due to the specular nature

of the measurements. The retardance and angle of linear retardance agreed within the

precision error in almost all cases. For the interfaceC the retardance of the simulated

and the experimental matrices were slightly different. This was the interface with the

smallest signal and the largestrms error was found. Given that the thickness of the

three retarders was the same, multiple reflections might have been coupled into the

measurements of interfacesD andE, but this was not included in the analysis. The

results indicate that if such interference existed it did not have a large effect on the

polarimetry measurements.

Lastly, some features of the inverse problem that remains to be solved were described.

In some cases, it might not be valid to assume that the forward and backward propa-

gation of light through a slice of a sample are the same. If an ideal polariser is part of

the sample, the polarisation information of the layers behind the polariser will reduce

to an intensity fluctuation. Pure circular retardance is not detectable in double-pass

measurements, but if a circular retarder is in front of some other polarisation element,

the circular retarder will have an effect on the measurement of the deeper layer. Depo-
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larisation produced by scattering can be measured at different depths, but, in general,

it will be an independent process at each layer.

7.2 Proposal for future research

The solution of the inverse problem

The study of the disentanglement of the Mueller matrices measured in double-pass

at different depths is an important step to follow. The advantages and limitations of

the technique need to be established, as to what sort of information can actually be ex-

tracted from the double-pass measurements. Attention should also be paid to scattering

samples.

Depth-resolved complete Mueller matrix imaging of the human eye in-vivo

As was mentioned in the introduction, the original motivation for this work is still

an interesting topic for research. Depth-resolved Mueller matrix retinal images might

provide medical researchers with new information of the structure an/or pathology of

the eye. The adaptation of the system built in this work seems like the obvious con-

tinuation of the project. Faster digital-to-analogue and analogue-to-digital electronics

and beam scanners will be needed, to reduce the artefacts introduced by the ocular

movements. Adaptive optics will be required to correct the aberrations of the eye and,

hence, obtain a significant depth resolution in the retina. The PSA of the system may

need to be modified. The high speed of the DOAP could compromise the signal to

noise ratio due to the small energy flux that can return to the system from the retina.

Confocal Mueller matrix polarimetry with high numerical apertures

In confocal microscopy, axial resolution can be achieved using reflection or transmis-

sion configurations. In confocal Mueller matrix polarimetry this might not always be

the case. If the N.A. of a transmission microscope is sufficiently low, the polarisation

properties that can be measured from a thick specimen will appear practically constant

for all the different depths. However, if the N.A. of the system is increased, signif-

icantly different portions of the specimen may be probed by the light when chang-

ing the axial position of the focus. Hence, polarisation signatures of the sample may

be identifiable at different depths. This could lead to the design of a depth-resolved

polarisation-sensitive confocal microscope in a transmission configuration. Particular
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attention should be paid to the effect of the axial component of the electric field [84].

Evaluation of the performance of a polarimeter

The condition number of a polarimeter is the parameter most widely used to evaluate

its performance [97]. As stated by Sabatkeet al. [12], the condition number does not

provide information on the reduction of the sensitivity to random errors that can be

obtained by taking redundant measurements that over-determine a Mueller matrix, or

a Stokes vector. It was shown here that the condition number of the PSG was smaller

(i.e. better) if only the matrix that relates the 6 detected Fourier coefficients to the time

varying Stokes vector is considered, instead of the 256 states of polarisation that were

generated. The condition number is a valuable tool in the fine tuning optimisation of a

particular polarimeter design, however, a different evaluation parameter should be used

if a general assessment of the performance of the system is desired. The two parameters

introduced by Sabatkeet al. are affected by the number of redundant measurements

taken, nevertheless, none of these three parameters are sensitive to how compatible are

the PSA and the PSG of a Mueller matrix polarimeter.

It is suggested here, that the evaluation of a system is made experimentally. Using the

principle of the ECM and an appropriate set of samples. It was mentioned, in chapter

4, that the accuracy of a system can be different on different samples. Therefore,

the estimated performance of a polarimeter might not be achieved when measuring a

sample for which the accuracy is worse by inherent properties of the system. A set of

samples that can estimate the accuracy of the system on each of the Mueller matrix

coefficients will be a very useful tool to evaluate a polarimeter. Additionally, such a

set of samples may also be used during the design of the polarimeter, in the light of the

ECM and the methods for optimised design of polarimeters developed by De Martino

et al. [97].

Publications

1. David Lara-Saucedo and Chris Dainty. Depth resolved polarization sensitive imag-

ing of the eye using a confocal Mueller matrix ellipsometer - Proof of principle.Inves-

tigative Ophthalmology & Visual Science, 44(Supl. 2):3627, May 2003.

2. David Lara and Chris Dainty. Polarization sensitive imaging using a confocal

Mueller matrix ellipsometer. In Asher A. Friesem and Jari Turunen, editors.ICO Topi-

122



7. Conclusions

cal Meeting on Polarization Optics, ISBN 952-458-291-0, page 226, Joensuu, Finland,

June 2003. Joensuun Yliopistopaino.

3. David Lara and Chris Dainty. Depth resolved polarization sensitive imaging using

a confocal complete Mueller matrix ellipsometer.EOS Topical Meeting on Advanced

Imaging Techniques. Delft, The Netherlands, 20-23 October 2003.

4. David Lara and Chris Dainty. Axially-resolved complete polarization sensitive

imaging with a confocal Mueller matrix imaging polarimeter.Submitted to Applied

Optics.

5. David Lara and Chris Dainty. Double-pass axially-resolved confocal Mueller matrix

imaging polarimetry.31Optics Letters, in press.

123



Bibliography

[1] C. C. D. Shute. Haidinger’s brushes.Vision Research, 18:1467, 1978.

[2] F. A. Bettelheim. On the optical anisotropy of lens fiber cells.Experimental Eye

Research, 21:231–234, 1975.

[3] G. J. Van Blokland and S. C. Verhelst. Corneal polarization in the living human

eye explained with a biaxial model.J. Opt. Soc. Am. A, 4(1):82–90, 1987.

[4] B. F. Hochheimer and Henry A. Kues. Retinal polarization effects.Applied

Optics, 21(21):3811–3818, 1982.

[5] R. P. Hemenger. Dichroism of the macular pigment and haidinger’s brushes.J.

Opt. Soc. Am., 72:734–737, 1982.

[6] H. B. klein Brink and G. J. van Blokland. Birefringence of the human foveal

area assessed in vivo with Mueller-matrix ellipsometry.J. Opt. Soc. Am. A,

5(1):49–57, 1988.

[7] Andreas W. Dreher and Klaus Reiter. Retinal laser ellipsometry: A new method

for measuring the retinal nerve fiber layer thickness distribution?Clinical vision

Sciences, 7(6):481–488, 1992.

[8] David G. Hunter, Saurabh N. Patel, and David L. Guyton. Automated detec-

tion of foveal fixation by use of retinal birefringence scanning.Applied Optics,

38(7):1273–1279, 1999.

[9] Stephen A. Burns, A. E. Elsner, M.C. Ballester, and R. B. Simmons. Separat-

ing sub-retinal and retinal structures using polarimetric imaging.Investigative

Ophthalmology & Visual Science, 42(4):S–706, 2001.

124



BIBLIOGRAPHY

[10] Mathieu G. Ducros, Johannes F. de Boer, Huai-En Huang, Lawrence C. Chao,

Zhongping Chen, J. Stuart Nelson, Thomas E. Milner, and H. Grady Rylander.

Polarization sensitive optical coherence tomography of the rabbit eye.IEEE

Journal of Selected Topics in Quantum Electronics, 5(4):1159–1167, 1999.

[11] Eric Compain, Stéphane Poirier, and Bernard Drevillon. General and self-

consistent method for the calibration of polarization modulators, polarimeters

and Mueller-matrix ellipsometers.Applied Optics, 38(16):3490–3502, 1999.

[12] D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme,

and G. S. Phipps. Optimization of retardance for a complete stokes polarimeter.

Optics Letters, 25(11):802–804, June 2000.

[13] Hugh Davson.Physiology of the eye. Churchill Livingstone, 1972.

[14] Lo J. Bour. Polarized light and the eye. In W. N. Charman, editor,Visual Optics

and Instrumentation, volume 1, chapter 13, pages 310–325. CRC Press, 1991.

[15] A. Stanworth and E. J. Naylor. Polarized light studies of the cornea I. the isolated

cornea.Journal of Experimental Biology, 30:160–163, 1953.

[16] G. Valentin. Die Untersuchung der Pflanzen-und Thiergeweben der Menschen

und der Thiere. Leipzig:Engelmann, 1861.

[17] Max Born and Emil Wolf.Principles of Optics. Pergamon Press, 1980.

[18] D. C. Cogan. Some ocular phenomena produced with polarized light.Archives

of Ophthalmology, 25(10):391–400, 1941.

[19] A. Stanworth. Polarized light studies of the cornea II. the effect of intra-ocular

pressure.Journal of Experimental Biology, 30:164–169, 1953.

[20] Lo J. Bour and J. Lopez Cardozo. On the birefringence of the living human eye.

Vision Research, 21:1413–1421, 1981.

[21] R. L. McCally and R. A. Farrell. Structural implications of small-angle light

scattering from the cornea.Experimental Eye Research, 34:99–113, 1982.

[22] D. S. Greenfield, R. W. Knighton, and X. R. Huang. Effect of corneal polariza-

tion axis on assessment of retinal nerve fiber layer thickness by scanning laser

polarimetry.American Journal of Ophtalmology, 129(6):715–722, 2000.

125



BIBLIOGRAPHY

[23] Richard A. Bone. The role of the macular pigment in the detection of polarized

light. Vision Research, 20:213–220, 1980.

[24] R. A. Weale. Sex, age and birefringence of the human crystalline lens.Experi-

mental Eye Research, 29:449–461, 1979.

[25] Juan M. Bueno and Melanie C. W. Campbell. Polarization properties forin

vitro human lenses.Investigative Ophthalmology & Visual Science, 42(4):S–

161, 2001.

[26] B. F. Hochheimer. Polarized light retinal photography of a monkey eye.Vision

Research, 18:19–23, 1978.

[27] David H. Hubel.Eye, Brain, and Vision. Scientific American Library, 1988.

[28] S. L. Polyak.The Retina. Chicago: University Press, 1941.

[29] H. L. De Vries, A. Spoor, and R. Jielof. Properties of the eye with respect to

polarized light.Physica, 19:419–432, 1953.

[30] G. Wald. Human vision and the spectrum.Science, 101:653, 1945.

[31] E. J. Naylor and A. Stanworth. Retinal pigment and the Haidinger effect.Jour-

nal of Physiology, 124:553–552, 1954.

[32] Richard A. Bone and John T. Landrum. Macular pigment in Henle fiber mem-

branes: A model for Haidinger’s brushes.Vision Research, 24(2):103–108,

1984.

[33] R. M. A. Azzam. Photopolarimetric measurement of the Mueller matrix by

Fourier analysis of a single detected signal.Optics Letters, 2(6):148–150, 1978.

[34] P. S. Hauge. Mueller matrix ellipsometry with imperfect compensators.Journal

of the Optical Society of America, 68(11):1519–1528, 1978.

[35] Barry Cense, Teresa C. Chen, B. Hyle Park, Mark C. Pierce, and Johannes F.

de Boer. Thickness and birefringence of healthy retinal nerve fiber layer tissue

measured with polarization-sensitive optical coherence tomography.Investiga-

tive Ophthalmology & Visual Science, 45(8):2606–2612, August 2004.

[36] W. N. Charman. Reflection of plane-polarized light by the retina.British Journal

of Physiological Optics, pages 34–49, 1980.

126



BIBLIOGRAPHY

[37] J. M. Gorrand, R. Alfieri, and J. Y. Boire. Diffusion of the retinal layers of the

living human eye.Vision Res., 24(9):1097–1106, 1984.

[38] G. J. Van Blokland and D Van Norren. Intensity and polarization of light scat-

tered at small angles from the human fovea.Vision Research, 26(3):485–494,

1986.

[39] G. J. Van Blokland. Ellipsometry of the human retina in vivo: preservation of

polarization.J. Opt. Soc. Am. A, 2(1):72–75, 1985.

[40] Andreas W. Dreher, Klaus Reiter, and Robert N. Weinreb. Spatially resolved

birefringence of the retinal nerve fiber layer assessed with a retinal laser ellip-

someter.Applied Optics, 31(19):3730–3735, 1992.

[41] Juan M. Bueno and Pablo Artal. Double-pass imaging polarimetry in the human

eye.Optics Letters, 24(1):64–66, 1999.

[42] Juan M. Bueno. Measurement of parameters of polarization in the living human

eye using imaging polarimetry.Vision Research, 40:3791–3799, 2000.

[43] Juan M. Bueno and Pablo Artal. Polarization and retinal image quality estimates

in the human eye.J. Opt. Soc. Am. A, 18(3):489–496, 2001.

[44] Johannes F. de Boer, Thomas E. Milner, Martin J. C. van Gemert, and

J. Stuart Nelson. Two-dimensional birefringence imaging in biological tis-

sue by polarization-sensitive optical coherence tomography.Optics Letters,

22(12):934–936, 1997.

[45] Klaus Schoenenberger, Bill W. Colston Jr., Duncan J. Maitland, Luiz B. Da

Silva, and Matthew J. Everett. Mapping of birefringence and thermal damage in

tissue by use of polarization-sensitive optical coherence tomography.Applied

Optics, 37(25):6026–6036, September 1998.

[46] Gang Yao and Lihong V. Wang. Two-dimensional depth-resolved Mueller ma-

trix characterization of biological tissue by optical coherence tomography.Op-

tics Letters, 24(8):537–539, 1999.

[47] Shuliang Jiao, Gang Yao, and Lihong V. Wang. Depth-resolved two-

dimensional stokes vector of backscattered light and mueller matrices of bio-

logical tissue measured with optical coherence tomography.Applied Optics,

39(34):6318–6324, December 2000.

127



BIBLIOGRAPHY

[48] Mathieu G. Ducros, Jason D. Marsack, H. Grady Rylander III, Sharon L. Thom-

sen, and Thomas E. Milner. Primate retina imaging with polarization-sensitive

optical coherence tomography.Journal of the Optical Society of America A,

18(12):2945–2956, 2001.

[49] Barry Cense, Teresa C. Chen, B. Hyle Park, Mark C. Pierce, and Johannes F.

de Boer. In vivo depth-resolved birefringence measurements of the human reti-

nal nerve fiber layer by polarization-sensitive optical coherence tomography.

Optics Letters, 27(18):1610–1612, 2002.

[50] Johannes F. de Boer and Thomas E. Milner. Review of polarization sensi-

tive optical coherence tomography and Stokes vector determination.Journal

of Biomedical Optics, 7(3):359–371, July 2002.

[51] Michael Pircher, Erich Goetzinger, Reiner Leitgeb, and Christoph K Hitzen-

berger. Transversal phase resolved polarization sensitive optical coherence to-

mography.Physics in Medicine and Biology, 49:1257–1263, March 2004.

[52] W. A. Shurcliff and S. S. Ballard.Polarized Light. D. Van Nostrand Company,

Inc., 1964.

[53] R. M. A. Azzam and N. M. Bashara.Ellipsometry and polarized light. North-

Holland, 1987.

[54] Russel A. Chipman. Polarimetry. In M. Bass, editor,Handbook of Optics,

volume 2, chapter 22, pages 22.1–22.37. McGraw-Hill, 1995.

[55] P. S. Hauge, R. H. Mueller, and C. G. Smith. Conventions and formulas for

using the Mueller-Stokes calculus in ellipsometry.Surface Science, 96:81–107,

1980.

[56] Leonard Mandel and Emil Wolf.Optical Coherence and Quantum Optics. Cam-

bridge University Press, New York, 1st edition.

[57] José J. Gil and Eusebio Bernabeu. A depolarization criterion in Mueller matri-

ces.Optica Acta, 32(3):259–261, March 1985.

[58] José J. Gil and Eusebio Bernabeu. Depolarization and polarization indices of an

optical system.Optica Acta, 33(2):185–189, 1986.

128



BIBLIOGRAPHY

[59] C. V. M. van der Mee. An eigenvalue criterion for matrices transforming stokes

parameters.Journal of Mathematical Physics, 34(11):5072–5088, November

1993.

[60] Shih-Yau Lu and Russel A. Chipman. Interpretation of Mueller matrices

based on polar decomposition.Journal of the Optical Society of America A,

13(5):1106–1113, 1996.

[61] P. S. Hauge. Recent developments in instrumentation in ellipsometry.Surface

Science, 96:108–140, 1980.

[62] Dennis H. Goldstein and Russell A. Chipman. Error analysis of a Mueller matrix

polarimeter.Journal of the Optical Society of America A, 7(4):693=700, 1990.

[63] J. Larry Pezzaniti and Russell A. Chipman. Mueller matrix imaging polarimetry.

Optical Engineering, 34(6):1558–1568, 1995.

[64] R. M. A. Azzam. Simulation of mechanical rotation by optical rotation: appli-

cation to the design of a new fourier photopolarimeter.Journal of the Optical

Society of America A, 68(4):518–521, 1978.

[65] Justin S. Baba, Jung rae Chung, Aimee H. Delaughter, Brent D. Cameron, and

Gerard L. Cote. Development and calibration of an automated Mueller ma-

trix polarization imaging system.Journal of Biomedical Optics, 7(3):341–349,

2002.

[66] Randall C. Thompson, Jerold R. Bottiger, and Edwuard S. Fry. Measurement of

polarized light interactions via the Mueller matrix.Applied Optics, 19(8):1323–

1332, 1980.

[67] F. Delplancke. Automated high-speed Mueller matrix scatterometer.Applied

Optics, 36(22):5388–5395, 1997.

[68] Eric Compain and Bernard Drevillon. Complete high-frequency measurement

of Mueller matrices based on a new coupled-phase modulator.Review of Scien-

tific Instruments, 68(7):2671–2680, 1997.

[69] Eric Compain and Bernard Drevillon. High-frequency modulation of the four

states of polarization of light with a single phase modulator.Review of Scientific

Instruments, 69(4):1574–1580, 1998.

129



BIBLIOGRAPHY

[70] Eric Compain, Bernard Drevillon, Jean Huc, Jean Yves Parey, and Jean Eric

Bouree. Complete Mueller matrix measurement with a single high frequency

modulation.Thin Film Solids, 313:47–52, 1998.

[71] G. E. Jellison Jr. and F. A. Modine. Two-modulator generalized ellipsometry:

theory.Applied Optics, 36(31):8190–8198, 1997.

[72] Juan M. Bueno. Polarimetry using liquid-crystal variable retarders: theory and

calibration.Journal of Optics A: Pure Applied Optics, 2:216–222, 2000.

[73] Antonello De Martino, Yong-Ki Kim, Enric Garcia-Caurel, Blandine Laude,

and Bernard Drévillon. Optimized Mueller polarimeter with liquid crystals.

Optics Letters, 28(8):616–618, 2003.

[74] Blandine Laude-Boulesteix, Antonello de Martino, Bernard Drévillon, and Lau-

rent Schwartz. Mueller polarimetric imaging system with liquid crystals.Ap-

plied Optics, 43(14):2824–2832, May 2004.

[75] R. M. A. Azzam. Division-of-amplitude photopolarimeter (DOAP) for the

simultaneous measurement of all Stokes parameters of light.Optica Acta,

29(5):685–689, 1982.

[76] S. Krishnan. Calibration, properties, and applications of the division-of-

amplitude photopolarimeter at 632.8 and 1523 nm.Journal of the Optical Soci-

ety of America A, 9(9):1615–1622, 1992.

[77] R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz. Construction,

calibration, and testing of a four-detector photopolarimeter.Review of Scientific

Instruments, 59(1):84–88, January 1988.

[78] A. M. El-Saba, R. M. A. Azzam, and M. A. G. Abushagur. Parallel-slab

division-of-amplitude photopolarimeter.Optics Letters, 21(21):1709–1711,

1996.

[79] Eric Compain and Bernard Drevillon. Broadband division-of-amplitude po-

larimeter based on uncoated prisms.Applied Optics, 37(25):5938–5944, 1998.

[80] Christophe Collet, Jihad Zallat, and Yoshitate Takakura. Clustering of mueller

matrix images for skeletonized structure detection.Optics Express, 12(7):1271–

1280, April 2004.

130



BIBLIOGRAPHY

[81] Juan M. Bueno and Melanie C. Campbell. Confocal scanning laser ophthal-

moscopy improvement by use of Mueller-matrix polarimetry.Optics Letters,

27(10):830–832, May 2002.

[82] Poul M. F. Nielsen, Freud N. Reinholz, and Paul G. Charette. Polarization-

sensitive scanned fiber confocal microscope. Optical Engineering,

35(11):3084–3091, November 1996.

[83] Tony Wilson, R. Juškaitis, and P. Higdon. The imaging of dielectric point scat-

terers in conventional and confocal polarisation microscopes.Optics Communi-

cations, 141:298–313, September 1997.

[84] Peter Török, P.D. Higdon, and T. Wilson. On the general properties of po-

larised light conventional and confocal microscopes.Optics Communications,

148:300–315, 1998.

[85] Peter Török. Imaging of small birefringent objects by polarised light conven-

tional and confocal microscopes.Optics Communications, 181:7–18, 2000.

[86] F. Massoumian, R. Jus̈kaitis, M. A. A. Neil, and T. Wilson. Quantitative polar-

ized light microscopy.Journal of Microscopy, 209(1):13–22, January 2003.

[87] Myeonghee Kim, David Keller, and Carlos Bustamante. Differential polariza-

tion imaging. I Theory.Biophysical Journal, 52:911–927, December 1987.

[88] Shinya Inoué. Foundations of Confocal Scanned Imaging in Light Microscopy.

In James B. Pawley, editor,Handbook of biological confocal microscopy, chap-

ter 1, pages 1–17. Plenum Press, New York, 2nd edition, 1995.

[89] Tony Wilson and Colin Sheppard.Theory and Practice of Scanning Optical

Microscopy. Academic press, London NW1, 1st edition, 1984.

[90] James B. Pawley, editor.Handbook of Biological Confocal Microscopy. Plenum

Press, 2nd edition, 1995.

[91] Tony Wilson. The role of the pinhole in confocal imaging system. In James B.

Pawley, editor,Handbook of Biological Confocal Microscopy, chapter 11, pages

167–182. Plenum Press, New York, 2nd edition, 1995.

[92] BS EN 60825-1:1994 with amendments 1, 2, and 3. Safety of laser products.

Part 1: equipment classification, requirements and user’s guide, 2003.

131



BIBLIOGRAPHY

[93] Niels P. A. Zagers, Jan van de Kraats, Tos T. J. M. Berendschot, and Dirk van

Norren. Simultaneous measurement of foveal spectral reflectance and cone-

receptor directionality.Applied Optics, 41(22):4686–4696, August 2002.

[94] J. Scott Tyo. Considerations in polarimeter design.Proceedings of SPIE; Po-

larization Analysis, Measurement, and Remote Sensing III, 4133:65–74, 2000.

[95] Matthew H. Smith. Optimization of dual-rotating-retarder Mueller matrix po-

larimeter.Applied Optics, 41(13):2488–2493, 2002.

[96] J. Scott Tyo. Design of optimal polarimeters: maximization of signal-to-noise

ratio and minimization of systematic error.Applied Optics, 41(4):619–630,

February 2002.

[97] Antonello De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon. General

methods for optimized design and calibration of Mueller polarimeters.Thin

Solid Films, (455–456):112–119, May 2004.

[98] Gene H. Golub and Charles F. Van Loan.Matrix computations. Johns Hopkins

University Press, 3rd edition, 1996.

[99] Hiroshi Takasaki, Mitsui Isobe, Toshinobu Masaki, Atsuo Konda, Tadao Agat-

suma, and Yasushi Watanabe. An automatic retardation meter for automatic

polarimetry by means of an ADP polarizatioin modulator.Applied Optics,

3(3):345–350, March 1964.

[100] A. Moritani, Y. Okuda, and J. Nakai. Use of an ADP four-crystal electrooptic

modulator in ellipsometry.Applied Optics, 22(9):1329–1336, May 1983.

[101] B. Trevelyan. The practical design of a laser modulator using 45 degree cut ADP

crystals. Journal of Scientific Instruments (Journal of Physics E), 2:425–428,

1969.

[102] Amnon Yariv and Pochi Yeh.Optical Waves in Crystals. John Wiley and Sons,

United States of America, 1984.

[103] R. M. A. Azzam. Beam-splitters for the division-of-amplitude photopolarimeter.

Optica Acta, 32(11):1404–1412, 1985.

[104] Shankar Krishnan and Paul C. Nordine. Mueller-matrix ellipsometry using the

division-of-amplitude photopolarimeter: a study of depolarization effects.Ap-

plied Optics, 33(19):4184–4192, 1994.

132



BIBLIOGRAPHY

[105] Y. Cui and R. M. A. Azzam. Sixteen-beam grating-based division-of-amplitude

photopolarimeter.Optics Letters, 21(1):89–91, 1996.

[106] A.M. El-Saba, R. M. A. Azzam, and M. A. G. Abushagur. Performance op-

timization and light beam deviation analysis of the parallel-slab division-of-

amplitude photopolarimeter.Applied Optics, 38(13):2829–2836, 1999.

[107] R. M. A. Azzam and A. De. Optimal beam splitters for the division-of-amplitude

photopolarimeter.Journal of the Optical Society of America A, 20(5):955–958,

May 2003.

[108] J. Larry Pezzaniti and Russell A. Chipman. Linear polarization unifor-

mity measurements taken with an imaging polarimeter.Optical Engineering,

34(6):1569–1573, 1995.

[109] Geroge Smith and David A. Atchinson.The Eye and Visual Optical Instruments.

Cambridge University Press, 1997.

[110] B. Richards and E. Wolf. Electromagnetic diffraction in optical systems.2.

Structure of the image field in an aplanatic system.Proceedings of the Royal So-

ciety of London Series A-Mathematical and Physical Sciences, 253(1274):358–

379, 1959.

[111] Tony Wilson and C.J.R. Sheppard. Imaging of birefringent objects in scanning

microscopes.Applied Optics, 24(14):2081–2084, 1985.

[112] P. Higdon, R. Juškaitis, and T. Wilson. The effect of detector size on the extinc-

tion coefficient in confocal polarization microscopes.Journal of Microscopy,

187(1):8–11, July 1997.

[113] Stephen C. McClain, Lloyd W Hillman, and Russell A. Chipman. Polarization

ray tracing in anisotropic optically active active media. i. algorithms.Journal of

the Optical Society of America, 10(11):2371–2383, November 1993.

[114] Stephen C. McClain, Lloyd W Hillman, and Russell A. Chipman. Polarization

ray tracing in anisotropic optically active active media. ii. theory and physics.

Journal of the Optical Society of America, 10(11):2383–2393, November 1993.

[115] James P. McGuire Jr. and Russel A. Chipman. Diffraction image formation

in optical systems with polarization aberrations. I: Formulation and example.

Journal of the Optical Society of America A, 7(9):1614–1626, September 1990.

133



BIBLIOGRAPHY

[116] James P. McGuire Jr. and Russel A. Chipman. Diffraction image formation in

optical systems with polarization aberrations. II: Amplitude response matrices

for rotationally symmetric systems.Journal of the Optical Society of America

A, 80(6):833–839, June 1991.

[117] Peter Török, P. Varga, Z. Lazik, and G. R. Booker. Electromagnetic diffraction

of light focused through a planar interface between materials of mismatched

refractive indices: an integral representation.Journal of the Optical Society of

America A, 12(2):325–332, 1995.

[118] Yu. A. Andrienko, M. S. Dubovikov, and A. D. Gladun. Optical tomography of a

birefringent medium.Journal of the Optical Society of America A, 9(10):1761–

1764, October 1992.

[119] Xueding Wand and Lihong V. Wang. Propagation of polarized light in bire-

fringent turbid media: A monte carlo study.Journal of Biomedical Optics,

7(3):279–290, July 2002.

[120] R. Clark Jones. A new calculus for the treatment of optical systems. VII Prop-

erties of the N-matrices.Journal of the Optical Society of America, 38(8):671–

685, August 1948.

[121] R. M. A. Azzam. Propagation of partially polarized light through anisotropic

media with or without depolarization: a differential 4*4 matrix calculus.Jour-

nal of the Optical Society of America A, 68(12):1756–1767, 1978.

[122] Francois C. Delori and Kent P. Pflibsen. Spectral reflectance of the human ocular

fundus.Applied Optics, 28(6):1061–1077, 1989.

134


