Imperial College

vy ==

».{;«G"ﬁ

Three-dimensional Complete
Polarisation Sensitive Imaging using

a Confocal Mueller Matrix Polarimeter

David Lara Saucedo

A thesis submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy and the Diploma of Imperial College London.

July 13, 2005



Abstract

Most of the conventional imaging systems used in a wide variety of applications like
biomedical imaging and material analysis can only record the intensity and/or phase
of light that has been scattered or emitted from the sample under observation. Hence,
some biological tissues and materials appear to be homogenous even when they may
possess some kind of internal structure. Polarisation-sensitive imaging is a form of
optical inspection that can reveal features in a sample that appear invisible to intensity
and/or phase detection systems. The complete effect of any optical element that mod-
ifies the state of polarisation can be represented as 4 thatrix (a Mueller matrix)

that acts as a linear operator on a Stokes vector. Prior to this work, these 16 Mueller
coefficients, which are in general linearly independent, have only been measured us-
ing two dimensional imaging techniques. All other 3-D polarisation-sensitive imaging
devices reported in the literature have only been able to obtain subsets of these 16 co-
efficients, leading sometimes to incomplete interpretations of polarisation dependent
features. We present here for the first time the combination of a depth resolved con-
focal imaging system with a complete Mueller matrix polarimeter. In other words, we
introduce for the first time a technique that can obtain complete-polarisation-sensitive
three-dimensional images which could reveal unknown anatomical condition of liv-
ing tissue that possesses polarisation-dependent signatures. The combination of these
two techniques resulted in other original contributions of this work. The first is that
due to the reflection configuration of the confocal microscope that is required for po-
larisation axial sectioning, a double-pass calibration method had to be implemented
and the necessary theory is described here. Secondly, we venture here on an attempt
to describe some features of the inverse problem concerning the disentanglement of
the measured complete Mueller matrices of contiguous axial positions. We also in-
dicate that the confocal sectioning of the system has a degrading effect, which may
not only affect Mueller matrix polarimetry measurements but also the performance of
previously reported incomplete-polarimeters. Lastly, we present experimentally mea-
sured depth-resolved complete-polarisation sensitive scans of non-biological samples
and how they compare to the forward simulation.
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1 Introduction: Polarisation

and the human eye

The visual system of a number of animals like bees, ants, some fish, and some verte-
brates can detect the polarisation of light; the human eye, on the contrary, is almost
polarisation-blind. Nonetheless, when light has an extremely high degree of linear
polarisation some people can perceive this with the naked eye. It turns out that we
may be able to see a small yellowish figure, called Haidinger’s brushes [1], which we
would not see when looking at non-polarised light. It has not been clarified yet what
is the origin of the Haidinger’s brushes, but it has been shown that some of the optical
elements of the human eye affect the state of polarisation of light [2, 3, 4]. It has also
been suggested that this is why, under some circumstances, optical polarisation effects
may be observed.

The ability of an individual to detect Haidinger’s brushes has been a useful and sensi-
tive indicator of compromised tissues in the macular region as well as other conditions
affecting the optical pathway for central vision [5]. The question of the precise po-
larisation mechanisms that take place in the human eye remains an interesting field of
study.

Although almost polarisation-blind, the human eye has been found to present consid-
erably strong birefringent properties. The cornea, for instance has been modeled as a
biaxial crystal with one of its optical axis (the fastest) perpendicular to its surface [3].
The retardation that has been reported, typica®2Xad for a double pass at the centre

of the cornea [3], is similar to a quarter of a wavelength. This makes the cornea the
component with the largest reported birefringence in the eye. The crystalline lens and
the retina possess a much lower birefringence than the cornea, however, it has been
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suggested that it is the retinal effect what causes the Haidinger’s brushes [6, 4]. And
in fact, it is the retinal birefringence that has been shown to be a useful parameter to
evaluate the health of the eye [7]. The thickness of the retinal fibre layer around the
optic nerve head has been estimated from the birefringence properties of the retina,
making it a possible useful tool in the early detection of glaucoma [7].

Recently, other applications have derived from the polarisation properties of the eye.
A very similar device to a pupil eye tracker has been designed that is based on the
birefringence of the fovea. Compared to more conventional eye trackers, the retinal
birefringence scanning technique can determine more accurately the direction of gaze
because it is based on foveal fixation [8]. An increase in contrast of deep retinal fea-
tures has been achieved by attempting a separation of polarised from non-polarised
light [9]. And also, polarisation-sensitive optical coherence tomography (OCT) has
been used to acquire depth resolved images of some polarisation properties of the
cornea and the retina [10].

The motivation of this Thesis was to develop a technique capable of obtaining depth
resolved complete polarisation sensitive images of the different components of the hu-
man eydn-vivo. The retinal structure and its relation to glaucoma was of special inter-
est. The rest of the optical elements, however, must not be overlooked; the retina is the
last component of the eye and the effect of the cornea and the lens needs to be removed
from the measurements obtained from the retina. A confocal Mueller matrix polarime-
ter was designed and built for the first time during this work. Only non-biological
samples were measured during this work, and more work is still necessary to achieve
the goal imposed by the original motivation. Nevertheless, the use of the technique
may not be limited to biomedical applications. Three-dimensional characterization of
the complete polarisation properties of materials can be achieved with the instrument
built. A large amount of work is still necessary to incorporate the technique into sys-
tems with higher numerical apertures, where the axial component of the electric vector
of the converging wavefront may become significant. High numerical aperture systems
may lead to complications in the reflection-type microscopes, but this might also allow
for the depth-sectioning polarisation-sensitive technique to be incorporated into trans-
mission microscopes. Additional work is still necessary regarding the solution of the
inverse problem which will be described in section 6.3. The reflection configuration of
the microscope imposed a calibration requirement that had not been addressed before
in the field of polarimetry: a double-pass calibration method was developed based on
the eigenvalue calibration method (ECM) by Competial. [11].

In the remaining part o€Chapter 1, a review of the studies that have been motivated
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by the polarisation properties of the human eye is presented. Special attention is given
to the retinal section, where the ultimate motivation for this work resided. Polarisa-
tion effects originate from the structure of the individual eye components, and a short
description of the cornea, the lens and the retina is also included.

Chapter 2 contains a brief introduction to each of the two techniques combined during
this work: Mueller matrix polarimetry and confocal microscopy. Emphasis is placed
on the polarisation section, to introduce the notation used throughout the rest of this
Thesis. The basic Mueller matrices used in the mathematical models in this Thesis
are explicitly written, and a number of references that deal with polarisation sensitive
imaging are cited. In the last section a short description of confocal microscopy is
included, and the reader is pointed to some of the classic bibliography.

Chapter 3 describes, in detail, the Mueller matrix polarimeter designed and built dur-
ing this work. Two Pockels cells were used in the polarisation state generator (PSG),
and a division-of-amplitude-polarimeter (DOAP) was used as polarisation state anal-
yser (PSA). The experimental components and mathematical models of the PSG and
PSA are included as individual sections. One subsection is dedicated to the descrip-
tion of the implementation of the Pockels cells. The condition numbers of the PSG
and the PSA are shown, and so is the evaluation of the PSG using another two param-
eters that have been reported in the literature: the RAD and the EWV [12]. The last
section includes the details on how the PSG and the PSA were combined to obtain a
non-calibrated Mueller Matrix.

Chapter 4 is devoted to the double-pass eigenvalue calibration method (DP-ECM),
developed during this work as a modification of the original ECM by Compdin

al. [11]. The original ECM is described first and then DP-ECM is presented. The
choice of the calibration samples is explained in a subsection, and subsequently, a
useful particular case of the DP-ECM is described: the two-branch DP-ECM. The
repeatability and accuracy of the system was tested, and the results are presented in
the last section. The results of an evaluation of the time stability of the polarimeter are
also included.

Chapter 5 presents the axially-resolved experimental results of a mirror, scanned with
the confocal Mueller matrix polarimeter: a first time achievement. It also describes the
two versions of the confocal optics that were built during this work, and the character-
isation of the Mueller matrix axial response of the systems. At the end, the first exper-
iments on the effect of the confocal pinhole on the Mueller matrices are described.
Chapter 6 describes the central achievement of this Thesis. The first depth-resolved
complete polarisation sensitive measurements are presented there. A stack of glass

8
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plates and retarders was built, and the Mueller matrices at different depths within the
stack were measured. A forward simulation that quantitatively assessed the accuracy
of the measurements is included, and subsequently some features that may be encoun-
tered when working on the inverse problem derived from this work are outlined.

Chapter 7 contains the conclusions and the recollection of the ideas derived from this
work that may become topics for future research.

1.1 Cornea model

The human cornea can be divided into 5 layers from the outside inwards: epithelium,
Bowman’s membrane, stroma, Descemet’s membrane and endothelium. The major
layer is the stroma which makes up to 90% of the 0.5 mm total corneal thickness at
the central region [13]. The stroma is made of at least 200 layers 1.5 1on2 thick
(lamellae); each lamella is made of parallel collagen fibres of 0.025 to .688i-
ameter. The collagen fibres have a refractive index of 1.55, and they are embedded
in a substance with a smaller refractive index equal to 1.35 [14]. This difference of
refractive indices produces form birefringence on each individual lamella, with a slow
axis perpendicular to the direction of the fibres within the lamella. However, this bire-
fringence is nearly zero across the whole cornea because the relative orientation of the
fibres of any two adjacent lamellae is more or less random [15].

The surface of the stroma may appear as an homogeneous medium for light that propa-
gates through its thickness, nevertheless, the random arrangement of the orientation of
the collagen fibres in different lamellae can induce another type of birefringence that is
equal to half the birefringence of an individual lamella, but with the slow axis perpen-
dicular to the stroma [15] (i. e. along the radius of curvature of the cornea). Evidence
of this effect was reported in 1861 by Valentin [16]; he found that when the cornea
was placedn-vitro between crossed polarisers, a dark cross intensity pattern could be
observed. It can be shown that a spherically shaped uniaxial crystal with its slow axis
in the radial direction produces such a dark cross, if it is placed between crossed linear
polarisers [14]. Experimentsn-vivo were published in 1941 by Cogan [18] describ-

ing exactly the same phenomenon. Stanworth and Naylor, in 1953 [15, 19], obtained a
value of 0.0014 for the birefringence of the isolated cat cornea; they also found that the
corneal retardance increased as the angle of incidence of the light augmented. They

1The shape of the crystal does not need to be spherical. A flat uniaxial crystal, with the face per-
pendicular to the optic axis, will produce the same effect when placed between crossed polarisers, if the
illumination beam is not collimated [17].
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concluded that the cat cornea behaves as a uniaxial crystal with the slow axis along the
direction of the radius of curvature of the cornea.

Long time later, in 1981, Bour and Lopez [20] used a subjective method to assess
the birefringence of the cornea. They determined the contrast on the retina of two
interfering laser beams entering the eye at different pupil positions. From the mea-
surements of the retardation between the two beams they calculated a birefringence
value of 0.0020 for the human cornea. Their results agreed with the value previously
reported by Stanworth and Naylor, and therefore they concluded that the cornea’s slow
axis is perpendicular to its surface.

A prominent piece of work was carried out by Van Blokland and Verhelst [3] in 1987.
They used Mueller matrix polarimetry to assess the change of the state of polarisation
of a beam of light that had made a double passage through the humaneye They
showed that after a double pass, the values of the retardation over the pupil plane look
like a saddleback function: increasing at the superior and inferior parts of the pupil
plane, and decreasing in the temporal and nasal directions, as shown in Fig. 1.1.
Neglecting the retinal and lens birefringence effects, Van Blokland and Verhelst could
explain their results by modeling the cornea as a biaxial crystal. In their model, one
principal axis (the fastest) is always perpendicular to the cornea with a birefringence of
0.00159 with respect to a second axis which is oriented nasally downwards. The value
for the birefringence of the second principal axis was found to.6@d14. Van Blok-

land and Verhelst proposed that the existence of the slow axis parallel to the corneal
surface could only be explained if there existed a preferential direction in the orienta-
tion of the collagen fibres of the stroma. They mention in their work that this interpre-
tation agrees with the experiments performed on small-angle scattering, by McCally
and Farrel [21], on isolated rabbit corneas.

In 2000, Greenfielet al. [22] constructed a device to measure the orientation of the
corneal principal axis that is parallel to its surface. Based on an idea by Bone [23],
the device incorporated two crossed linear polarisers and a retarder. They illuminated
the eye with linearly polarised light and analysed the reflection from the back surface
of the crystalline lens (4th Purkinje image) with a polariser at an azimuth perpen-
dicular to the illumination beam. The retarder was used to decide whether the axis
found was a fast or a slow axis. Among 118 eyes of 63 subjects, only 6 eyes were re-
ported to demonstrate unmeasurable corneal birefringence. For the remaining 112 they
reported a mean corneal polarisation axis orientation d°24 21.4° nasally down-
wards, which agrees with the biaxial model of the cornea previously proposed by Van
Blokland and Verhelst. A graph with the results obtained by Greerdieddl is shown

10
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Figure 1.1:Amount of retardation and the eigenstates of a double passage through the ocular media
and scattering at the fundus. Values are displayed as a function of the exit pupil with a central entry.
Each measuring point is represented by a diamond. The orientation and ellipticity of the eigenstate are
given by the orientation and ratio of the short to the long axis of the diamond. Its handedness is given by
the sign. The lines indicate contours of equal retardation at intervals°offdgure and caption taken

from [3].

in Fig. 1.2.

The cornea is the most anterior surface of the eye, therefore, the characterization of
its polarisation properties is a crucial factor when studying the polarisation effects of
deeper structures inside the eye. When assessing lens and retinal polarisation charac-
teristicsin-vivo it will always be necessary to compensate for the large corneal retar-
dation, which may be different for each individual.

1.2 Lens contribution
The crystalline lens is formed by several layers of fibres. Structurally, the lens is
divided from the outside to the centre into capsule, epithelium and the lens substance

[13]. The diameter of the fibres in the cortex of the lens substanceuim2and

11
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Figure 1.2:Distribution of the corneal polarisation axis parallel to the surface of the cornea among
112 normal eyes. NU = nasally upwards; ND = nasally downwards. Taken from [22].

the fibres are arranged like the layers of an onion. From this kind of arrangement, a
measurable amount of form birefringence could be expected. In 1975, Bettelheim [2]
estimated theoretically that the form birefringence of the lens falls in the range between
0.002 and 0.00002, but also that the intrinsic birefringence of the lenticular fibres could
be of similar magnitude and opposite sign. Four years later, Weale [24] examined the
lenticular birefringence and reported values betwe®b x 1076 and—3.5 x 1075,

which are very small compared to the cornea.

In 2001, Bueno and Campbell [25] concluded that the lens does not contribute substan-
tially to the total ocular retardation. They performieevitro Mueller-matrix imaging
polarimetry on 7 human crystalline lenses. They obtained a mean value for the lens
retardation of 8 x 10~ at the central position.

1.3 Retinal polarisation properties

1.3.1 Structure of the retina

Since 1844, when Haidinger discovered the phenomenon of the perceptibility of po-
larised light by the human eye (Haidinger’s brushes), researchers have been attempting
to explain its origin. As reviewed by Hochheimer [26], some explanations would at-

12
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tribute the Haidinger’s brushes to the corneal collagen arrangement, the lens structure,
or, more often, to either the radial symmetry of the Henle’s fibre layer or the dichroic
absorption of the yellow macular pigment. Results concerning these last two theories
are reviewed in the present section, but first a short description of the structure of the
retina is presented.

The human retina consists of several layers of different types of cells through which
the light must pass before reaching the photoreceptors layer. The retinal photoreceptors
layer (pacillary layer) is the penultimate layer reached by the light that had entered the
eye, after it has traversed another 8 distinguishable layers; see Fig. 1.3.

o Pigment epithelium

2a Outer segments

9 Bacillary layer (cones and rods)
2b Inner segments

e Outer limiting membrane

Q Outer nuclear layer {

4a Cone nuclei

4b Rod nuclei

5a Inner rod and cone fibres
(Henle fibres)

5b Rod spherules and
cone pedicles (synapsis)

e Outer plexiform layer {

e Inner nuclear layer —— Bipolar cell nuclei
a Inner plexiform layer ——» Inner synaptic layer

e Ganglion cells

i ﬂm /@ Optic nerve cells
Inner limiting membrane

Figure 1.3:Cross section of the retina midway between the fovea and far periphery, adapted from
[27]. In the figure, light that had entered the human eye would travel from the bottom to the top of the
diagram.

On a plane perpendicular to the visual axis, the surface of the retina is divided into
two main zones: théoveg in the center of the visual field, and tiperiphery The
central fovea (see Fig. 1.4) is a small depression on the retina caused by the radial
displacement of the layers 5 to 9 in the diagram of Fig. 1.3. In the foveal depression,
the receptors consist entirely of cones and are longer and thinner than elsewhere in
the retina: 7Qum long and betweenum and 15um thick [13]. These last two main
characteristics make the most central part of the fovea the region with highest visual
acuity. From one edge to the other, the foveal depression is aroung:b@0de

(about 5 measured from the nodal point of the eye).

The second main region, the periphery, starts at aroundl50@®@@m the foveal centre,
where the cone density falls to 12 cones per 100, and there are two rods between
each pair of cones. In the whole human retina there are approximately 7 million cones

13
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Figure 1.4:Polyak’s illustration of the central fovea [28]. Note the disappearance of the inner layers
in the foveal centre. Light reaching the photoreceptors would travel from the bottom to the top of the
illustration.

and 75-150 million rods.

1.3.2 Retinal dichroism and birefringence (Haidinger’s brushes)

In 1978, Hochheimer [26] used a fundus camera with two crossed polarisers to photo-
graph the retina of anaesthetised rhesus monkeys. His photographs shuoosesd ke

dark figure overlying the macular area which he related to the Haidinger’s brushes. If
the elements responsible for the macular cross pattern had been the cornea or the lens,
the position of the cross on the retina should have varied when changing the angle of
the entrance of the light. This was not found in the work realised by Hochheimer [26];
the macular cross always appeared in the same place around the central fovea. When
varying the wavelength from 400 to 745 nm, Hochheimer reported he could still dis-
tinguish theMaltese crosgattern centered at the fovea. However, he reported that at
765 nm and 830 nm wavelengths the pattern could no longer be seen. At first sight,
this latter result seemed to show that the macular polarisation effects observed were
produced by the dichroic absorption of the macular pigment, as it was once stated by
Devrieset al. [29] in 1953. However, according to Wald [30], the macular pigment
absorption is very small at wavelengths above 525 nm. Should the hypothesis of De-
vrieset al. be true, no dichroic effect could be present at wavelengths over 525 nm.
Hence, Hochheimer’s work suggested that it is very unlikely that the absorption of the
macular pigment is the responsible for the macular dichroism. Hochheimer indicated
that the Henle’s nerve fibre layer has the faculty of exhibiting dichroism and that it has
the required radial symmetry over the macular area to produce the polarisation effects
he encountered which may ultimately be related to the Haidinger’s brushes.

During the same year, Shute [1] suggested a possible explanation for the cross pat-
tern photographed by Hochheimer, which opposes to the hypothesis of the Haidinger's

14
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brushes being related to the Maltese cross. Shute argued that both perpendicular axes
of the cross pattern had been produced in the same way, and that they had been due to
the birefringence of the radial elements in the Macula lutea (Henle's fibres). According
to Shute, using vertical linearly polarised light incident into the eye, such birefringence
would cause the reflected light from the macula to become elliptically polarised at the
directions where the Henle’s fibres make an angle 6fwih respect to the vertical
(azimuths: 458, 135, 225 and 315). Light reflected from these locations could thus

be able to pass through the horizontal analyser. The dark bars of the Maltese cross
would have been caused by the extinction of the linearly polarised light that retained
its vertical polarisation after it had been reflected from the regions where the Henle’s
fibres made an angle of 90r 0°. Shute stated that if this explanation was correct, the
Haidinger’s brushes could not be attributed to the radial symmetry of the Henle’s fibre
layer.

Devrieset al. [29] and Naylor and Stanworth [31] stated in the 1950’s that it is the
macular pigment dichroism what causes the Haidinger’s brushes. This hypothesis was
later supported by Bone[23] in 1980, who found a very close relation between the
spectral distributions of the optical density of the macula and the dichroic ratio of the
macular pigment (1.145 at 460 nm). From subjective measurements, he concluded that
both distributions have their origin in the retinal pigment and that the pigment must
consist of molecules possessing a preferential direction of absorption over the visible
spectrum.

Two years later, Hemenger [5] argued that form dichroism should be responsible for
at least a contribution to the Haidinger’s brushes. In 1982, Hemenger developed a
theory of form dichroism arising from the structure of the Henle’s fibre layer due to
the size, arrangement, and refractive index of the fibres, and the characteristics of the
surrounding medium. His model assumed no preferential orientation of the pigment
molecules. Hemenger supported his model on Hochheimer’s experiments, stating that
form dichroism is always accompanied by form birefringence and vice versa. Accord-
ing to Hemenger, if it was possible to measure the birefringence of the macula, it would
have been possible to determine whether the form dichroism was sufficiently large to
account for Haidinger’s brushes or not. He remarked that the visibility of Haidinger’s
brushes had been used clinically as an empirical indicator of the integrity of the mac-
ula, and therefore, if form dichroism was the correct explanation, any pathology that
might perturb the structure of the Henle’s fibre layer would be expected to reduce the
visibility of the brushes.

Bone and Landrum [32] gave new support for macular pigment hypothesis in 1984.

15
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They demonstrated the dichroic properties of lutein, the substance which is believed
to be part of the macular pigment, and showed that a bilipid membrane such as the
Henle’s fibre membrane, is capable of aligning lutein molecules in a way which would
result in the formation of Haidinger’s brushes.

In a meticulous paper from 1988 [6], Klein Brink and Van Blokland assessed the bire-
fringence of the human foveal ar@avivo using Mueller-matrix polarimetry, and at-
tributed the values they found only to the form birefringence of the Henle’s fiber layer.
The optical device used in this study, a PCSC’A Mueller matrix polarimeter, had been
previously described by Azzam [33] and then generalized by Hauge [34], 1978. The
polarimeter they built consisted of a light source, a linear polariser (P) and a rotatable
retarder (C) in the entrance optics (polarisation state generator: PSG), and a second
rotatable retarder (C’), a linear analyser (A) and a detector in the output arm (polari-
sation state analyser: PSA). Assuming radial symmetry in the macular region, Klein
Brink and Van Blokland irradiated 8 retinal fields on an annular area around the fovea.
They kept fixed the entry and the exit positions of the light on the cornea to separate
the retinal retardation contribution from the much larger corneal retardation. For each
of the 8 retinal fields, a Mueller matrix was found and the total retardation was calcu-
lated. The total measured retardation (corneal and retinal) was synthesised by a two
harmonics Fourier function of the azimuth angle of the 8 retinal fields, see Fig. 1.5.

S0 T T -

retardation (degrees)

0 90 180 270 360
azimuth (degrees}

Figure 1.5:Calculated retardation as a function of the azimuth in the retinal plane at an annular radius
of 2.9°. The drawn curve is a best fitting Fourier synthesis. Figure and caption taken from [6].

Klein Brink and Van Blokland had expected a radially symmetric behaviour of the
retinal retardation. As a first approximation, they assumed that the cornea acted as
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1. Introduction: Polarisation and the human eye

a linear retarder with the slow axis pointing nasally downwards [3]. They expected
two pairs of azimuth directions for which extreme values of the total retardation would
exist: a pair when the slow axes of the cornea and retina were parallel, and a pair
when they were perpendicular to each other. Under this assumption, the retinal effect
should have manifested as a sinusoidal function of the azimuth angles, with a period of
180, of the irradiated fields along the circular annulus described on the retina. It was
indicated, however, that the corneal retardation component should not have remained
constant when varying the angle of incidence on the cornea, and it was shown that
this contributed to the total retardation as an oscillatory curve also with two maxima
and two minima. They hypothesised that these extreme values coincided with the two
extreme values of the retinal contribution, and therefore, the second harmonic of the
total retardation must have been either an addition or a subtraction of the retinal and
the corneal retardation. From the experimental data, Klein Brink and Van Blokland
concluded that the slow axes of the retina, in the periphery of the fovea were radially
arranged, and thus, that the absolute values of the retinal and corneal retardation need to
be subtracted to compute the magnitude of the total retinal retardation. In Fig. 1.6, the
final results of their work are reproduced for the different combinations of wavelength,
radius of the annular area, and retinal illuminance.

Annulardd [lluminance Corrected RetardationC
Radius (deg)O levell at 514 nm[ at 568 nm|
-]

1.2500 lowO 13.6*+1.20 14.3*1.0C
ooa highO 18.0+t1.20 17.1*1.1C

2.9000 lowO 11.7*t1.00 16.8*0.7C
ogd highO 14.170.70 19.8*1.6

Figure 1.6:Corrected values for the double-pass retinal retardation. Taken from [6]. The retardation
values are expressed in degrees, as they appear in the original publication.

Klein Brink and Van Blokland argued that the intrinsic birefringence produced by
the preferential orientation of the lutein molecules, suggested by Bone and Laundrum
[32], was probably very small due to a small concentration of preferentially arranged
molecules. They attributed the retinal retardation that they found to the Henle’s fiber
layer structure.

This has been the most widely accepted explanation of the retinal birefringence, how-
ever Klein Brink and Van Blokland’s work was based on the results of one single eye
[6]. Recently, in a study that used polarisation-sensitive optical coherence tomography
has been reported that the birefringence of the retina varies across the retinal surface
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1. Introduction: Polarisation and the human eye

[35]. This may compromise the validity of Klein Brink and Van Blokland’s results.

1.3.3 Preservation of polarisation and retardation of light reflected

from the retina

It has been shown by several authors [36, 37, 38, 39] that when light is reflected by the
retina a high degree of polarisation can be preserved. This can have an important role
in applications like fundus reflectometry [38] and measurements of the optical quality
of the eye.

In 1980, using a polariser-analyser optical system, Charman [36] measured the po-
larised portion of the light reflected from the retina, and reported that it decreased with
longer wavelengths. He stated that some polarisation changes were caused by the bire-
fringence of the cornea and the lens, and hence the portion of polarised light emergent
from the eye decreased as the pupil diameter increased. Gorrand [37], four years later,
measured the modulation depth of an interference pattern on a plane conjugate to the
retina, using linearly polarised light and several entry positions on the pupil plane.
Gorrand stated that the birefringence and the depolarisation due to the presence of op-
tically active material in the eye could have been the origin of the degradation of the
modulation depth of the interference pattern.

Both authors, Charman [36] and Gorrand [37], may have been led to erroneous inter-
pretations of their experimental results due to the incompleteness of their instruments;
these were simple polariser-analyser systems where elliptically polarised light can be
confused with partially polarised light. When no a-priori information of the polarisa-
tion properties of the samples is available a Mueller matrix instrument is often prefer-
able. Van Blokland, in 1985, measured the change in the degree of polarisation caused
by backscattering at the retina and double passage across the ocular media [39] using
a Mueller matrix polarimeter. Van Blokland’s results show that nearly 90% of the de-
gree of polarisation is preserved with some visible wavelengths. One year later, Van
Blokland and Van Norren [38] extended this work by taking measurements at 9 dif-
ferent exit pupils while varying four different parameters: the position of the entrance
pupil, the bleaching level (illuminance), the location on the retina, and the wavelength.
They concluded that the polarisation of light is largely preserved under almost all the
conditions tested, with the notable exception of red light (647 nm), see Fig. 1.7. Light
of longer wavelengths (red) come to a focus at a deeper layer inside the eye, where
the choroid, composed of layers of blood vessels, may produce a larger amount of
scattering. Furthermore, a larger spot size, produced by longer wavelengths, can also
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1. Introduction: Polarisation and the human eye

increase the proportion of scattered light that propagates back towards the measuring
instrument. This could have been why the degree of polarisation measured by Van
Blokland and Van Norren was significantly smaller when using red light.

[ o—oCentral,unbleached | e—eFoveal

e—eCentral,bleached o—a 5° temporal
a—aNasal, N o—o 8° temporal
a—aTemporal,

Degree of preservation of polarization (%)

c ' d
00fF-----—--—-“—-F oo -
SOf + -
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Figure 1.7:Percentage of preservation of polarisation of light as a function of 9 different positions of

the exit pupil in a horizontal meridian. a) Results as a function of the position of the entrance pupil and
the state of the visual pigment; wavelength 514 nm, foveal fixation. b) Results of three different retinal
locations; 514 nm, visual pigment bleached, central entry. ¢c) Comparison of results for three different
subjects; 514 nm, visual pigment bleached, central entry, foveal fixation. d) Results as a function of
wavelength; visual pigment bleached, central entry, foveal fixation. Figure and caption taken from [38].

A different region of the retina was studied with respect to polarisation effects in 1992.
Dreheret al. [40] measured local retardation changes in the periphery of the optic disc
(the peripapillary retina) to determine if the retinal nerve fibres (ganglion cells axons;
see Fig. 1.3) were also responsible for retinal birefringence. They employed a Mueller
matrix polarimeter to examine the spatially resolved retinal retardation at 200 locations
on a circular annulus around the optic nerve head. The experiments were performed
on 8 postmortem human eyes, from each of which the anterior segment (including
the cornea and the lens) was excised. Similarly to previous work [39, 38, 3, 6], the
device they used was based on Hauge’s [34] Mueller matrix polarimetry theory, but
this time they incorporated an automatic scanning unit to guide the measuring beam
to various locations on the retina. The device built by Dredteal. was designed

to measure polarisation changes from a spot of light afBFocused on the retinal
plane, instead of the.8° field (89Qum) measured previously by Van Blokland and
Van Norren [38]. Dreheet al. reported that at the wavelength of 632.8 nm between
50 % and 85 % of the light reflected from the retina was polarised. Additionally, they
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1. Introduction: Polarisation and the human eye

calculated the direction of the birefringence eigenvector as a function of the angular
measuring position, and indicated that the optic axis of the birefringent structure was
arranged with radial symmetry around the optic nerve head. Deglatrreported two

broad maxima in the retardation distribution around the optic nerve head that are shown
in Fig. 1.8. According to the authors, the locations of the maxima coincided with the
locations where the nerve fibre layer is thickest. The relative minima coincided with
locations of blood vessels.

RETARDATION [°]

40
30

20

o 60 120 180 240 300 360

ANGULAR POSITION OF MEASUREMENT LOCATION ([°1]

Figure 1.8:Retardation values measured along the circle around the optic nerve head of a postmortem
human eye. Taken from [40].

In a subsequent study, Dreher and Reiter [7] assessed the thickness of the retinal fibre
layer around the optic nerve head from retardation measurements. In order to compen-
sate for the corneal birefringence, they used a mathematical corneal model to isolate
the polarisation effects of the retinal fibre layer. A trial and error algorithm varied the
amount of retardation and the orientation of the principal axis of the model cornea until
the best correlation was obtained between the calculated optic axis direction and the
expected radial arrangement of ttiecumpapillarynerve fibres. With this algorithm

they estimated a corneal retardation value of 48d a slow axis orientation of 15
nasally downwards [40]. Whereas the corneal optic axis direction agreed with previ-
ously reported results [3, 22], the central retardation of the cornea was significantly
less than what had been reported earlier by Van Blokland and Verhelgt,at4668m

[6]. The absolute retardation values obtained in the living human eye retinas were
higher than those measured in postmortem eyes. Dreher and Reiter suggested that this
last difference might have been due to the tissue preparation of the postmortem eyes.
Dreher and Reiter's work was the basis of a currently commercially available clinical
device, the GDx by Laser Diagnostic Technologies, Inc. This device estimates the
thickness of the retinal nerve fibre layer from measurements of the retinal retardation.
The instrument is an incomplete polarimeter that assumes constant birefringence over
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1. Introduction: Polarisation and the human eye

the retinal surface.

Another study that implemented Mueller matrix polarimetry, was reported by Bueno
and Artal in 1999 [41], and then by Bueno in 2000 [42]. A CCD camera was used
to record the Mueller matrix images of the pupil and retinal conjugate plaréso.

Using two liquid-crystal variable retarders and two removable quarter wave plates,
Bueno and Artal built a Mueller matrix imaging polarimeter. Bueno and Artal also
studied how double pass estimates of the retinal image quality were affected by the
polarisation state of the light [43]. After calculating the Mueller-matrix of the eye,
they reconstructed the image of a point of light focused on the retina for different
states of polarisation of the incident light, and different configuration of the polarisa-
tion analysing optics. They concluded that the state of polarisation used in the incident
light of double pass technique did not affect significantly the quality of the first-pass
image on the retina. They also concluded , however, that when polarising elements
are placed in both the entrance and exit optics, incorrect estimates of the image quality
might be obtained [43].

The most recent developments in polarisation sensitive imaging of the eye have imple-
mented polarisation-sensitive optical coherence tomography systems (PS-OCT) [44,
45, 46, 10, 47, 48, 49, 50, 51]. This is an incomplete polarimetry technique with a
powerful depth sectioning capability. The results have been commonly stated in terms
of Stokes vectors and Mueller matrices, but the technique is only capable of assessing
the state of polarisation of the portion of light that is totally polarised. It is worth to
mention that these limitations do not occur in a confocal imaging system.

The backbone of this Ph.D. work is the development of a technique that can obtain
complete polarisation sensitive images of biological and non-biological samples at
different depths within the sample, of particular interest is the identification of non-
healthy conditions of the human eye. The exact origin of the polarisation effects
that occur in the human eye is still an important field of study. The depth resolu-
tion achieved with confocal microscopes on the living human eye (confocal ophthal-
moscopes) is not as good as that reported by OCT systems. For some applications a
better depth resolution may be preferable to a complete polarisation characterisation,
but surely, that is not always the case. A combination of the two techniques can also be
an alternative. Perhaps, further implementations of the technique developed here will
address that question.
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2 Mueller matrix polarimetry

and confocal microscopy

This chapter is not intended to be a comprehensive analysis of the two techniques that
were combined in this project. There is already an enormous amount of literature
that deals with that purpose and the reader will be referred to such when it becomes
necessary. For the sake of completeness, however, a brief review of the aspects of
each of these two techniques that are relevant to this work is presented in the following
sections. Two goals are pursued in this chapter. Firstly, for those readers who are not
familiar with either of the techniques, the basic concepts are presented; and secondly,
this exercise is an ideal starting point to introduce the notation that will be used in
the rest of this Thesis. Special attention should be given to the case of polarisation
of light, as there exist different notations that could give rise to inconsistencies in the
interpretation of the equations.

2.1 Mueller matrix polarimetry

The state of polarisation of a beam of light can be represented by four numbers that,
when grouped in a 4 1 vector, are known as the Stokes vector [52, 17, 53, 54], in-
troduced by G. G. Stokes in 1852. According to Shurcliff, the Stokes vector pro-
vides the simplest possible method of predicting the result of adding two incoherent
beams [52]. The Stokes vector can be defined in terms of the cartesian components
of the transverse electric fiel&(r,t) andEy(r,t), and the relative phase difference:

0 = Oy(r,t) — &(r,t); or it can be defined in terms of measurable energy fluxes or
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2. Mueller matrix polarimetry and confocal microscopy

irradiancesly v 45 45R andL '

S < EZ(r,t) >+ <E2(r,t) > I+ v
E2(r,t) > — <E2(r,t Iy — |
S— S1 — < X(rv )> < y(ra )> — H \ . (21)
S 2 < Ex(r,t)Ey(r,t)cogo(r,t)) > las— 1 _45
S3 2 < Ex(r,t)Ey(r,t)sin(8(r,t)) > IR—IL

For a fixed spatial position, the brackek a>, in Eq. 2.1, represents the time average

of a over an interval of timd that is long enough to make the time-average indepen-
dent ofT itself [53]. For an instantaneous snapshot of a wide beam of light, the bracket
may refer to the spatial average over the area covered by the beam.

When the Stokes vector is used to represent the state of polarisation of light, the linear
effect of an optical element on the state of polarisation is described by 4 real
valued matrix called the Mueller matrix of the sample [52]. The sample may be a
surface, a polarisation element, an optical system, or some other interaction which
produces a reflected, refracted, diffracted, or scattered light beam [54]. As can often
be found in the literature (e.g. [52, 53, 55, 54, 56]), the interaction of an optical element
with a Mueller matrixM can be represented by the left multiplicationhdftimes the
incident Stokes vectd,.

Sout: M 'Sn- (2-2)

In this Thesis, capital boldface functions will represent Mueller matrices, unless oth-
erwise stated. The dot betwebhandS,, in the previous equation indicates a matrix
product (row-column operation) and not an element-by-element product (dot product).
Throughout this Thesis, all products indicated Byrépresent matrix products if ma-
trices or vectors are involved. In matrix form, Eq. 2.2 can be written as

S0 M1 M2 M3 Mg S
S S
1 _ Mp1 M2 NMh3 Mg ) 1 . (2.3)
S M1 Mgz Mgz M4 )
3 Mg1 M4z My3 Mg S3

out in
Some authors prefer using zero sub-indices for the first elements of the Mueller matrix,

but the notation followed by Azzam [53ir(j, withj j—1 2 3 4) was adopted here.

IH = horizontal, V = vertical, 45 = diagonal at 4545 = diagonal at-45°, R = right circular, and L
= left circular.
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2. Mueller matrix polarimetry and confocal microscopy

Other calculi have been developed for analysing polarisation; two worth mentioning
are the Jones calculus [53] and the coherence matrix calculus [56]. The Jones calculus
has some unique advantages. For instance, every normalised Jones matrix that can be
written down corresponds to a device that can be produced in the laboratory, and a
Jones matrix can be differentiated, to yield information as to the intensive properties of
the material of the optical element it represents [52]. The Jones calculus, however, is
only applicable if the incident beam is completely polarised, and if the optical elements
represented by the Jones matrices do not decrease the degree of polarisation of light.
Scattering samples cannot be represented using this formalism. The coherence matrix
calculus, as well as the Mueller calculus, can account for partially polarised incident
beams [55], nevertheless, the coherence matrix calculus is not applicable if the samples
represented are of depolarising type [53]. The propagation through depolarising optical
systems can be handled using the Mueller formalism, and it is the definition of the
Stokes vector in terms of irradiances (right part of Eq. 2.1) what makes the Mueller
calculus most generally suited for describing irradiance-measuring instruments [54];
for this reasons, it was the formalism chosen in this Thesis.

Not every 4x 4 real valued matrix is a Mueller matrix that can operate on a Stokes
vector as a real optical element that can be built in the laboratory or found in nature. A
good number of publications have dealt with finding valid criteria to test if a matrix is

a Mueller matrix; see for instance references [57, 58, 59, 54]. This subject falls beyond
the scope of this work, but it is important and must not be overlooked, specially during
the analysis and interpretation of experimental results. The results obtained during
this work are the first of their kind, and more work will be necessary for the solution

of the inverse problem derived from them (see section 6.3). The validity criteria of
Mueller matrices may play an important role within the research that may result after
this Thesis.

2.1.1 Basic Mueller matrices

The Mueller matrix of an optical element depends on the wavelength of the incident
beam, the angle of incidence, and the orientation of the sample. A Mueller matrix
specifies an optical element in a particular orientation; if the orientation of the optical
element changes, a different Mueller matrix must be used. For optical systems com-
posed by a sequencefpolarising elements, the overall Mueller matrix of the system
can be found by multiplying the N individual Mueller matrices in the same order as
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2. Mueller matrix polarimetry and confocal microscopy

the corresponding optical elements appear in the syétem

Msystem:MN'MN_]_'...'MZ'M]_. (24)

According to Shurcliff [52], the derivation of the Mueller matrices was based on ex-
periment and not from electromagnetic theory. Nevertheless, for every Jones matrix,
which may be derived from electromagnetic theory [53], there exists a correspond-
ing Mueller matrix [55]. The empirical nature of Mueller matrices makes them very
powerful in the laboratory, given that some of their elements can easily be related to
experimental measurements, even more when they are combined with the irradiance
definition of the Stokes vector (Eq. 2.1).

The simplest optical element that can be represented by a Mueller matrix is the empty
space, i.e. an element that does not affect the state of polarisation of light: the identity
matrix l4.4. A perfect reflector, at normal incidence, can be represented by a very
similar matrix but the last two elements on the diagonal should have negative sign. A
pure normal reflection does not alter the linear horizontal or vertical components of the
electric vector, but it does change the origin of the coordinate system with respect to
which the azimuth of the polarisation ellipse is defined [17] (i.e. the sign of the third
component of the Stokes vector). And it also changes the handédiieks circular
component of the polarised beam (i.e. the sign of the fourth component of the Stokes
vector).

The azimuth of a polarised beam of light is the angular position of the polarisation
ellipse’s major axis measured in a counterclockwise direction for an observer looking
into the source. The reference orientation is taken as the plane of incidence or scat-
tering, the horizontal position, or, conventionally, thaxis [55, 53]. In this Thesis
azimuth values are always quoted in degrees, to avoid confusing them with retardance
values, which are quoted in radians or wavelengths.

The Mueller matrix of a perfect reflector is, therefore,

10 0 O
01 0 O
Mirror = . (2.5)
00 -1 0
00 0 -1

°Note that in Eq. 2.4 the matrix product must be performed from right to left, in the order the optical
elements would interact with a beam of light that first passes thrivugh

3The handedness of the ellipse of polarisation determines the sense in which the ellipse is described.
For an observer looking into the source, the polarisation is right handed if the ellipse is traversed in a
clockwise sense (i.e. when $f(t)) > 0in Eq. 2.1) [17].
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2. Mueller matrix polarimetry and confocal microscopy

The Mueller matrices of most polarising optical elements can be easily found in the
literature. Some good examples are the publications by Shurcliff and Ballard [52];
Hauge, Muller, and Smith[55]; Azzam and Bashara [53]; and Chipman [54]. Mueller
matrices that may not be listed within those or other publications can often be calcu-
lated by adequate multiplication of basic Mueller matrices. In this work, for instance,
all the polarisation optical elements were ideally modeled by particular cases and ori-
entations of the linear-diattenuator linear-retarder métrix

1 —cos AV 0 0

Plm, W) = | % 1 0 0 . (2.6)
0 0 sin2lcosA  sin2AVsinA
0 0 —sin2VsinA  sin 2P cosA

wherert, is the intensity transmittance (or reflectance) for non-polarised g, an
auxiliary angle that depends on the relative amplitude diattenuation [17]

tan¥ = ﬂ, (2.7)

T

andA is the retardance introduced by the optical element (é.g0 Eq. 2.1). The
signs in the definition oP(tp, W, A) signify that the fast axis of the retarder within the
optical element coincides with the horizontatgxis) of the coordinate system, and
that the transmittance (or reflectance) is maximum for linear horizontally polarised
light and minimum for linear vertically polarised light. The eigenvalugs4y, /3, £4)
of P(7p,W,A) can be calculated from the solution of the characteristic polynomial of
the matrix in Eq. 2.6.

{1 = 215 Sir (W), (2.8a)

lp = 215c0S(W); (2.8b)

{3 = 1psin(2W) exp(id), (2.8c)
(4= Tpsinl 2W) exp(—iA). (2.8d)

The 0" azimuth orientation simplifies the calculations, however, the results do not de-
pend on the azimuth of the optical element. The relation between these eigenvalues

“4Diattenuation is the material property of an optical element that exhibits different intensity trans-
mittance (or reflectance) for different states of polarisation.
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and the parameters, ¥, andA is the standing point of the eigenvalue calibration
method [11] which will be described in section 4.1.

The Mueller matrix of an ideal linear polariser-analyser with transmittance for non-
polarised lightt and azimuth at DOdegrees, for instance, can be derived from the
matrix P(t,7/2,0). This type of element is so common and useful in the laboratory,
that its Mueller matrix will be explicitly named as

Pol(t) =1- (2.9)

O O - B
o O -
o O O O
o O O o

Similarly, an ideal linear retarder that introduces a relative phase sliftadians %
wavelengths), with the fast axis oriented at an azimuth anglé ah@ transmittance
(P(z,m/4,A)), will be called

10 0 0
01 0 0
Ret(t,A) =1 _ (2.10)
0 0O cos\ sinA
0 0 —sinA cosA

Using the last three matrices, Egs. 2.6, 2.9, and 2.10, it was possible to model all the
polarisation optics implemented in the experimental part of this Thesis: Glan-Taylor
polariser, Pockels cells, wave-plates, dichroic polariser and analysers, polarising beam-
splitters, non-polarising beamsplitters and mirrors. The azimuth orientations of the
optical elements were introduced by using two matrices that operate as rotators of the
Stokes vector in space. Different author prefer different notations of the rotation ma-
trix. The one chosen here was

1 0 0 0
0 cos26+f5) —sin2A6fy) O
0 sin26+4f5) co0s36f5) O
0 0 0 1

Rot(6) =

8 ®
8

, (2.11)

where 6 is the azimuth (in degrees) by which the matRet(6) rotates the Stokes
Vector. With this simple definition, if the Mueller matrix of an optical element is
known at an azimuth of QMM ., then the Mueller matrix of the same optical element
at an azimutt® will be given by
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MM ¢ = Rot(6) - MM ¢ - Rot(—6). (2.12)

The rotation matrix of Eq. 2.11, can also be related to the Mueller matrix of an op-
tically active material, that is, a material that exhibits circular retardance. This type
of elements were not used as part of the instrument built in this work, however, the
system was capable of measuring such type of matrices. A right-circular rétafder

retardancé\ induces an equivalent rotation 8f= —%¢ 8% degrees.
1 0 0O O
0 cosAc sinAc O
CircRetyight(Ac) = e ¢ (2.13)
0 —sinA; cosA: O
0 0 0 1

Similarly, a left-circular retarder of retardanfeinduces a rotation of = 52289 de-

grees.
One of the most important advantages of the Mueller calculus over other formalisms is
that it can be applied to depolarising samples. Imaging biological tissue has been the
principal motivation for this work, therefore, it is expected that the technique developed
here will be applied on samples that exhibit some depolarisation, for instance due to
scattering. The Mueller matrix of a pure depolariser is given by

O O Bk
o 29 O
T O o
© O o

Depol(a,b,c) = ,lal,[bl,Jef < 1. (2.14)

0 0OcC

As for a circular retarder, a complete Mueller matrix polarimeter, like the one devel-
oped here, could measure the Mueller matrix of a depolarising element. In fact, it
could measure the complete Mueller matrix of any sample from which a signal may be
recorded.

An insightful and rather general review of the role of each Mueller matrix coefficient
was published by Lu and Chipman in 1996 [60]. Other reviews can also be found in
the literature; see, for instance, references [52], [54], and [53], where the definitions of
the different properties of a Mueller matrix can be found.

SIn a right-circular retarder the right-circular component is faster than the left-circular.

28
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2.1.2 Polarimetry

The science of measuring the state of polarisation of a beam of light, or the polarisation
properties of a sample, is called polarimetry or ellipsometry, depending on the author
[53]. Ellipsometry is commonly associated with the measurement of only the ellipso-
metric angles of a beam [17], therefore, the term polarimetry was adopted during this
work for referring to the more general case.

In the laboratory, a Mueller matrix can be measured using many different systems. All
of them should have two parts in common: a polarisation state generator (PSG) and
a polarisation state analyser (PSA) [61]. Light with different known states of polari-
sation needs to be generated, with the PSG, to probe the sample. After the light has
interacted with the sample to be characterized, the resulting Stokes vector should be
measured with the PSA. A minimum of four intensity measurements are required to
determine the Stokes vector of a beam, and a minimum of 16 are required to obtain
a complete Mueller matrix. For these two cases, the measurements need to be lin-
early independent in the domain of the Stokes vector space. If the required number of
linearly independent measurements is not reached the characterization of the Stokes
vector, or the Mueller matrix, will be incompléte

Different methods have been used to configure the PSG and PSA of Mueller matrix
polarimeters: rotating wave plates [33, 34, 38, 62, 63], optical rotators [64, 65], Pock-
els cells [66, 67, 68, 69, 70], photoelastic phase modulators [71, 69], and liquid crystal
variable retarders [72, 73, 74], among others. Also, several types of a useful PSA, the
division of amplitude polarimeter (DOAP)[75], have been designed that use polaris-
ing beamsplitters [75, 76], windowless planar-diffused Si photodiodes [77], a dielec-
tric parallel slab with metallic a coated surface [78], and uncoated prisms [79].With a
DOAP, all the intensity measurement required to calculate the Stokes vector of a beam
can be taken simultaneously. This increases acquisition rate of the system, sometimes
at the cost of lower signal to noise ratios.

The Mueller matrix polarimeter built during this work was similar to the one imple-
mented by Francoise Delplancke [67]. It used two Pockels cells as linear variable
retarders in the PSG, and a DOAP with non-polarising beamsplitters for the PSA. The
details will be presented in chapter 3. This type of instrument can, in principle, obtain
measurements at very high frequencies. The typical rise time of a Pockels cell is of
the order of 1 ns, and the DOAP is only limited by the speed at which the signal on

5When only some polarisation properties need to be investigated, incomplete polarimetry can be
advantageous over complete polarimetry since the complexity of the measuring instrument can often be
reduced.

29



2. Mueller matrix polarimetry and confocal microscopy

each photodetector can be recorded. There are no moving parts in this type of de-
sign, which simplifies its assembly and helps to make the calibration robust, provided
other changes, like the dependance of the Pockels cell retardances on temperature, are
well corrected. The possibility of obtaining Mueller matrices at high acquisition rates,
makes this type of polarimeter suitable for inspecting a sanmplavo at different

spatial positions.

Polarisation sensitive imaging

Obtaining the polarisation properties of a sample at different locations within the
sample is known in the literature as polarisation sensitive imaging [63], regardless
of whether the polarimetry is complete or incomplete. Prior to this work, complete
Mueller matrix polarimetry had only been combined with two-dimensional imaging
techniques [63, 80, 81]. The three-dimensional polarisation sensitive systems that
have been reported had only been able to measure an incomplete set of the polar-
isation parameters. Some of these systems used confocal polarisation microscopes
[82, 83, 84, 85, 86], differential polarisation imaging [87], and polarisation-sensitive
optical coherence tomography [44, 45, 46, 10, 47, 48, 49, 50, 51].

The confocal Mueller matrix polarimeter built in this work is the first instrument capa-
ble of measuring the complete Mueller matrices of a sample at points spatially resolved
in three dimensions. The depth resolution of the Mueller matrix polarimeter built here
is what makes the technique unique. Whenanpriori information can be obtained
about the polarisation properties of a sample, the measurement of the complete polar-
isation information becomes necessary to characterize it. Optical coherence tomogra-
phy is a very powerful three-dimensional imaging technique, but its principle of oper-
ation impedes the acquisition of the depolarisation information of the sample. For the
sake of not compromising the polarimetry measurements, a confocal microscope was
chosen in this work to achieve the depth resolution necessary for three-dimensional
imaging.

2.2 Confocal Microscopy

The most important feature of a confocal imaging system is that it can select the optical
axial position of the object, or within the observed object, from which an image is
to be produced, by obstructing almost all the light that is being reflected, emitted,
scattered, or diffracted from all other axial positions. In a confocal microscope two
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2. Mueller matrix polarimetry and confocal microscopy

lenses are used, one for illuminating a small portion of the sample with a spot of
light (an image of a point light source), and one for collecting the light that has been
scattered from the illuminated spot of the sample. This type of illumination enhances
the signal that returns to the system from the position of interest, with respect to the
signal propagating from the surrounding region. The light returning from the sample
Is re-imaged to form a small spot by the collector lens, or with the aid of an additional
lens, onto a plane where a small aperture is placed: a pinhole that can obstruct the
light that has been scattered from other positions than the position of interest. The
pinhole is a conjugate of the small portion illuminated in the sample, and also of the
point light source. If the pinhole is sufficiently small, even the light propagating form
axial positions closely separated from the axial position of the illuminated spot can
be obstructed. To produce an image of the specimen, the illuminated region can be
changed by moving the sample and keeping the system fixed, or by scanning the spot
of light and maintaining the pinhole always conjugated to the position illuminated with
the small light spot.

According to Inoué [88], the confocal microscope was invented in 1957 by Marvin
Minsky. Since then, although not regularly, a large number of publications have been
released that study its theory and practice. Two valuable concise resources are the
book by Tony Wilson and Colin Sheppard [89], and Hendbook of Biological Con-

focal Microscopyedited by James B. Pawley [90]. Both texts include theoretical and
practical aspects of confocal microscopy.

The theory of confocal microscopes is often based on the use of an infinitesimally
small pinhole on the detection end of the system. In practice, this can be achieved by
using a single-mode optical fibre as a coherent detector, but sometimes it is not pos-
sible and finite size pinholes are used. In many cases the size of the pinhole needs to
be rather large due to signal-to-noise limitations [91]. Large area (non ideal) detec-
tion deteriorates the axial resolution of the microscope and the coherent nature of the
confocal detection [89].

In the laboratory, the design of of a confocal microscope is often driven by the specific
requirements of each application. In the human eye, for instance, the irradiance levels
must not compromise the integrity of the ocular tissue and must comply with the max-
imum permissible exposure (MPE) limits established [92]. The light that returns from
the eye is only a small fraction of the light used for illumination [93] and the low light
levels can affect the speed of the measurements, the pinhole size of the microscope
(i.e. the lateral and axial resolution), the signal to noise ratio, and also the cost of the
instrument.
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2. Mueller matrix polarimetry and confocal microscopy

The confocal microscope built in this work was designed using a very simple con-
figuration. The goal of this project was to examine the feasibility of combining the
confocal microscope with Mueller matrix polarimetry, hence, the simplest approach
was obviously preferred. For applications of the combined technique, more specific
designs will be necessary. For example, a fast scanning unit will be required to obtain
three-dimensional images of the human @y&ivo to eliminate the artefacts of the
movements of the eye. And adaptive optics compensation of the ocular aberrations
will be necessary to ensure a significant depth resolution of the system at the retina.
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3 Experimental setup I:

Mueller matrix polarimeter

In this Thesis a confocal microscope was built within a complete Mueller matrix po-
larimeter. In order to study the experimental accuracy of the polarimetry measure-
ments of the combined system, the polarimeter needed to be characterized before the
confocal optics were introduced in the device. As mentioned in section 2.1, there are
several ways to measure a Mueller matrix of a sample; in this chapter the implemented
polarimetry technique is described, and also results that show its accuracy and repeata-
bility are presented.

The Mueller matrix polarimeter we built was based on that implemented by Francgoise
Delplancke in 1997 [67]. Two electro-optical modulators (Pockels cells) were used
to define the state of polarisation of the light incident on the sample and a Division of
Amplitude Polarimeter (DOAP) measured the state of polarisation of the light scattered
from the sample for each probing state of polarisation. Significant modifications were
made to Delplancke’s original design. These differences include the type of voltage
modulation applied to each Pockels cell, the configuration of the four detectors of the
DOAP, and most importantly, the double-pass reflection configuration of the system
that is required to obtain depth-resolved complete polarisation sensitive images. These
differences, which constitute a part of the original work that is presented in this chapter,
will be explicitly stated when necessary throughout the following sections.

First, in section 3.1, the polarisation state generator (PSG) is described, followed by a
brief evaluation of its theoretical performance, and a subsection on the implementation
of the Pockels cells. Subsequently, the polarisation state analyser (PSA) is presented
in section 3.2, and finally, the combination of the two parts of the system towards ob-
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3. Experimental setup I: Mueller matrix polarimeter

taining a non-calibrated Mueller matrix is described in the last section. The calibration
of the system constitutes the next chapter.

3.1 Polarisation State Generator: PSG

A 1:10 scale diagram of the PSG branch is shown in Fig. 3.1. Light was generated with
a 532 nm frequency-doubled diode-pumped solid state laser (Melles Griot 58 GCS).
The nominal output power of the laser was 5 mW, but a 0.8 O.D. neutral density filter
ensured a working beam power of less than 1 mW. An iris diaphragm (lris 1) placed
after the filter served as reference for aligning the subsequent components and also
to block spurious back reflections. Neutral density filters of between 0.6 and 1 O.D.
mounted on a filter wheel were used to regulate the intensity incident on the sample
and to avoid saturation of the photodetectors. Mirror M1 then bent the optical path to
make the system fit on the optical table. The emitted light from the laser is specified by
the manufacturer as linearly polarised vertical to the base of plate By placing a
Glan-Taylor polarising prism after the mirror M1 it was possible to set the polarisation
reference azimuth angle to 9With better precision; it was easier to rotate the prism
than the laser. The azimuth orientation of the prism was then used as reference angle
for all the polarising elements. The Glan-Taylor also ensured an initial high degree of
polarisation purity given that the specified extinction ratio for this prism (Melles Griot
03PTA401) was better than 18,

Linear vertically polarised light that emerged from the Glan-Taylor prism passed through
two electro-optical modulators (transverse Linos LM0202 Pockels cells) that acted as
linear variable retarders. The fast-axis of the first and the second Pockels cells were
aligned at 45 and O respectively. The birefringence of the Pockels cells can be mod-
ulated by applying a varying voltage across the direction of propagation of light, but
the details will be explained later in this section. A second diaphragm (lris 2), which
was placed after the Pockels 2, was used as an aligning tool for the spatial filter and the
beamsplitter in front of the sample. For the nominal laser beam diameter of 1.1 mm,
the spatial filter consisted of a 15.5 mm focal length microscope objédtivaos
038722) and a 2@m pinhol€. The last two elements of the PSG were a 200 mm fo-
cal length collimating doublet lens and a circular aperture that defined the stop surface

1The N.A. of the spatial filter was 0.035, and the nominal Airy disc diameter at the pinhole plane
was 18.5um.

2The pinhole size was equivalent to 4.2 optical units (0.u.). This was calculatedvt,gsmé’l NArp,
whereNAis the numerical aperture amg is the real pinhole radius.
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Pockel's 1 Pockel's 2

Figure 3.1:Schematic diagram of the experimental PSG within the confocal polarimeter (scale 1:10).
M1: Mirror, Glan-Taylor: Polarising prism with axis at 90Pockels 1: Electro-optical modulator with

the fast axis at 45 Pockels 2: Electro-optical modulator with the fast axis’at.d.: Collimating doublet

lens. Faded area covers the polarisation state analyser and the confocal optics; they are described in
section 3.2 and chapter 5 respectively.

of the whole optical system. The diameter of this circular aperture was never larger

than 10 mm, and it selected only a small part at the centre of the collimated beam.

For this reason, the illumination was assumed to be uniform across the aperture of the
system.

3.1.1 Mathematical modeling of the PSG

The state of polarisation of light incident on the sample was modulated using two
electro-optical modulators that behaved as linear variable retarders. If the retardance
of a linear retarder with the fast axis &t & a function of timeA(t), then Eq. 2.10
becomes

0 0 0
1 0 0
0 cod\(t) sinA(t)
0 —sinA(t) cosA(t)

Ret(t,A(t)) =1- (3.1)

o O O -

According to Eq. 2.11 the Mueller matrix of a linear variable retarder with the fast axis
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3. Experimental setup I: Mueller matrix polarimeter

oriented at an azimuth angfemust be

0 0 0
1 0 0
0 cod\(t) sinA(t)
0 —sinA(t) cosA(t)

Ret(r,A(t),0) = T-Rot(6) - ‘Rot(—8). (3.2)

o O O -

Assuming that the two Pockels cells behave as perfect linear variable retarders, their
Mueller matrices can be found by substituting the adequate paramet®fts and 6

in Eq. 3.2 for each of them. The fast axis of the first Pockels cell was oriented at 45
and the second was aligned at This combination of angles warrants access to all the
states of polarisation on the Poincaré sphere, provided one retardance varies within a
n radians interval and the other within & Padians interval. The transmittance of both
modulators was modelled as unity. This assumption is entirely adequate given that the
intensity of the light incident on the sample was the reference intensity to determine
the transmittance of the sample. It is easy to see that the Mueller matrices for the two
Pockels cells were

1 0 0 0
Pocky (D1 (t)) = Ret(1,8q(t), 7 /4) = g Cosgl(t) 2 _Sinsl(t) . (3.3a)
0 sinAj(t) 0 cosAq(t)
10 0 0
Pocky(Ao(t)) = Ret(1, Ay(t),0) = 8(1) Cosgzm sinAc:(t) (3.3b)
0 0 —sinAy(t) cosAx(t)

The two Pockels cells were combined successively to modulate the state of polarisation
of light that started as linear vertically polarised {p@fter passing through the Glan-
Taylor prism:

36



3. Experimental setup I: Mueller matrix polarimeter

S

(3.4)

Combining Egs. 3.3 and 3.4, the light that passed through the PSG, as is depicted in
Fig. 3.2, resulted in

1
—CcosA (1)
—sinAp(t) sinfx(t)
—sinAp(t) cosAy(t)

Spsdlt) = = Pocky(A2(t)) - Pocky (A1 (t)) - S (3.5)

. eo\'\O“

\L\W

Pockel's 2
OO

Pockel's 1
450

Glan-Taylor 90°

Figure 3.2:Polarising elements of the PSG which defSpgd(t).

The choice of the modulation parameters for the retardafigg$ andAy(t) ensured

that at least 4 linearly independent states of polarisation were generated to obtain a
complete polarimetry measurement. The bottom three elements of the Stokes vec-
tor Spsg(t) in equation 3.5 can be interpreted as a transformation from spherical to
rectangular coordinates of points on the surface of the Poincaré sphere. For a vector
(s1,%,83)" in rectangular coordinates, with its endpoint on the surface of the sphere,
A1 (1) represents the angle of the vector to the negative horizontal-a$ig (andA;(t)

is the angle between the projection of the vector onto the plane perpendicujaarid S

the negative diagonal axis-&,) as it is shown in Fig. 3.3.

With this in mind, it is evident that witl; (t) contained within an interval of length

m, andAy(t) within an interval of length £, any state of polarisation on the surface of

the sphere could be generated.

One way to generate a complete set of incident states of polarisation with this PSG
configuration was by setting the values of the retardances to

37



3. Experimental setup I: Mueller matrix polarimeter

Ss

Figure 3.3:Parametric representation of the states of polarisation within the span of the PSG as a
function of the time depending retardandgsandA; of equation 3.5. Note that i, (t) € [0,7), and
Dy (t) € [-m, ) any point on the surface on the Poincaré sphere can be addressed.

3r

B (t) = 200t - =, (3.6a)
Do (t) = et — 37” (3.6b)

where the slopeny defined the angular frequency of the modulated set of states of
polarisation. Clearly, from Eq. 3.5, the generated states of polarisation were repeated
every To = 27/ ap time units. The main advantage of this type of modulation is that,
with the polarisation state analyser (PSA) used in our setup, the elements of the Mueller
matrix to be measured were simply linear functions of a finite known set of Fourier
coefficients of the detected intensity signals, and this will be shown in section 3.2. In
Delplancke’s PSG [67] the retardances produced with the Pockels cells were sinusoidal
functions, disadvantageously relating the Mueller matrix elements to an infinite set of
harmonics to be detected, and therefore neglecting the high frequency terms.

The periodicity of the sine and cosine functions in Eq. 3.5 permits emulation of the
monotonically increasing retardances by using sawtooth functions. In practice, the
time varying voltage signals applied to the Pockels cells were sawtooth functions that
induced the sawtooth retardances

N () = 47rfrac(g) - 3_7:7 (3.7a)
™2

Ao(t) = 2xfrag( ) — oF. (3.7b)
W 2

frac(x) stands for the fractional part &f and as mentioned previously, & the period
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3. Experimental setup I: Mueller matrix polarimeter

of the modulation for the first Pockels cell.

A graphic of one cycle of the sawtooth signals used in the experiment is shown in Fig.
3.43. The corresponding states of polarisati§pdg(t)) that were generated are shown

as vector endpoints on the Poincaré sphere. A full cycle consisted of a sequence of 256
different states of polarisation which are represented by the blue dots on the Poincaré
sphere in Fig. 3.4(b). The blue arrow indicates the direction of the modulation as
time progressed, and the green dot behind that arrow corresponds tb=tifdethat

is, {81(0),82(0)} = { 3%, =%}, when linearly polarised light at45° was generated.

The rest of the individual green dots on the sphere also correspond to a vertical pair
of green dots on Fig. 3.4(a). For example, at 0.8 ms, the retardances induced by
the Pockels cells were{—yr,*TE’”}, and therefore the light was linear horizontally
polarised.

oasf ]
: : : P : : s

-0.25

Retardance in wavelength units

74 : : 74 : :
05 g e ERTIR. frovs [ IR AR G
g : : : :

;£ :
£ : : : A -~ Tst Pockels
0.75¢7 R O RN S . ond Pockels

0 0.8 1.6 2.4 3.2 4 4.8 5.6
Time in milliseconds (exactly one modulation cycle is shown)

@)

@ -

Figure 3.4:(a) Time varying retardances of the Pockels cells as they were implemented in the exper-
iment. (b) Poincaré sphere representation of the generated states of polarSatigh)X during one
modulation cycle. The blue dots on the sphere correspond to an instantaneous (vertical) pair of retar-
dances on the left graph. Retardances at time) produced the green dot just behind the arrow that
indicates the direction of the modulation as time progressed.

According to Fig. 3.3 there should exist an alternative modulation fjtbontained
within a & radians interval that would have produced the same result. One example of
such modulation is shown in Fig. 3.5, but since a full wavelength retardance could be
produced with both Pockels cells, far= 532 nm, we chose the simpler approach of
the two sawtooth functions.

3Note that both retardances varied withinaradians interval (one wavelength).
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ce in wavelength units

1st Pockels
- 2nd Pockels

0 08 16 24 82 4 18 56
Time in milliseconds (exactly one modulation cycle is shown)

Figure 3.5:Alternative retardance functions for the Pockels cells with the valuds @j within a
n radians interval. These retardances would produce the exact same set of states of polarisation as the
functions in Eq. 3.6 and Fig. 3.4(a).

Evaluation of the PSG

The most widely used parameter in the evaluation and optimisation of complete po-
larimeters is the condition number of the PSG and the PSA matrices [68, 94, 95, 96,
97]. This figure of merit is defined as the ratio of the largest to the smallest of the
singular values, and it reflects the orthogonality of the different states of polarisation
generated (PSG) or detected (PSA) with the instrufneint the absence of system-

atic errors, the signal to noise ratio (SNR) is maximum when the condition number
is minimized [96, 97]. Nevertheless, it does not provide information about the over-
determination of the system or the number of times that each state of polarisation is
used or measured. The condition number can be used to compare PSAs restricted to 4
measurements to determine a Stokes vector, or PSGs that probe the sample with only
4 different states of polarisation. The comparison of polarimeters that use different
number of states of polarisation should be done carefully, and ultimately, operational
restrictions and ease of implementation should also be considered.

In polarimeters that use 4 different states of polarisation, the 4 optimum Stokes vectors
constitute the vertices of a regular tetrahedron that lies on the surface of the Poincaré
sphere, this was first suggested by Azzatmal. in 1988 [77]. The optimum condition
number for such type of configurations is equalf8. Disregarding how the PSG and

the PSA were combined, the condition number of the266 matrix that contains the

256 Stokes vectors generated in each modulation cycle was equal to 2. If, however,
only the 6 intersections of the Poincaré sphere with the coordinate axes are used, the
condition number of the 4 6 matrix would be equal ta/3. These 6 points are the
green dots marked in Fig. 3.4(b) and were contained within the 256 states of polari-

4The condition number of a matrix is defined as the ratio of the largest to the smallest eigenvalue as
computed with the singular-value decomposition [98]
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3. Experimental setup I: Mueller matrix polarimeter

sation generated by the PSG that we built. Clearly, states of polarisation sufficiently
orthogonal were generated in our polarimeter, that at least matched the condition num-
ber of the tetrahedron configuration.

A more realistic approach to evaluate the PSG is to analyse it as a part of the whole
Mueller matrix polarimeter. The combination of the PSG and the PSA, as to how an
experimental Mueller matrix was obtained, will be presented in section 3.3. It will
be shown that the 256 states of polarisation generated by the PSG were not measured
independently by the PSA, and that the actual quantities that can be considered as inde-
pendent measurements were 6 coefficients for each of the 4 detectors in the PSA. For
this reason, the evaluation of the PSG was based on the generation of this 6 quantities.
For the sake of clarity, this discussion will be presented in subsection 3.3.1, after the
description of the PSA and of how a Mueller matrix was measured.

3.1.2 Pockels cells implementation

The validity of the mathematical modeling discussed in subsection 3.1.1 strongly de-
pended on the precision of the angular alignment of the Pockels cells, the amplitude
of the voltage signals, and the magnitude of the voltage bias applied to compensate
for the residual natural birefringence. In this subsection, the experimental alignment
and determination of the voltage signals applied to the electro-optic modulators will
be described.

Each of the two transverse Pockels cells used in this Thesis was made of four Ammo-
nium Dihydrogen Phosphate (ADP) crystai1,H,PO4. ADP is an artificially grown
transparent uniaxial crystal that becomes biaxial when an electric field is applied [99].
The optic axis of the ADP crystal is aligned with t&é crystallographic axis in the
normal state and, when used in tbagitudinalmode, it is split into two axes when an
electric field is applied along its optical axis. No exact information is publicly available
about the exact configuration of the 4 crystals inside the Linos LM0202 electro-optic
modulators; however, it is common to arrange them into two pairs oX4&ut crys-

tals with theX’ axes of one pair perpendicular to the other pair [100]; this arrangement
is shown in Fig. 3.6. Using the 45(’-cut configuration, the first pair of crystals are
aligned to cancel double refraction, and the second pair is rotateth@@mpensate

for thermal instability and natural birefringence. In this configuration each crystal is
used in theransversemode and makes use of the coefficieft of the electro-optic
tensor, which is approximately 3 timegs (r41 = 24.7 4 0.3pnV ~1)[101].

In the transverse mode, the equation of the index ellipsoid (optical indicatrix) [102] of
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Figure 3.6: Typical configuration of 4 ADP 45X’-cut crystals in a transverse-field electro-optic
modulator. The voltage is applied along eaxis €); y andZ indicate the other two crystal coordinate
axes, of whicl? represents the optical axis of the crystal.

each ADP crystal becomes

N, 2 2
n0 nO ne

wheren, andne are the refractive indices that correspond to the ordinary and extraor-

dinary rays, respectively, when no field is applied. Agdis the magnitude of the

electric field (applied along th¥’ axis). Equation 3.8 signifies that the dielectric ten-

sor is no longer diagonal in th€'Y’Z’ coordinate system and that a rotation in Y&’

plane, an angle around theX’ axis, is required to write it in a diagonal form. Defining

y =y'cosp —Z'sin¢g, and (3.9a)
Z =y'sing + 7' cosg, (3.9b)

it is easy to show that the index ellipsoid becomes

X//Z

n2
Mo

with ¢ defined by

1 1
+ (ﬁ +ra1Ey¢ tanq)) y'?+ (? —ra1Ey tanq)) 7% =1; (3.10)
(0]

e

2r41EX/
(1/n8) — (1/ng)
Substituting the numerical values of the ADP properties [102Eq. 3.11, one can
find that the rotation of the principal ax&$ andZ’ axes for an electric field as large
asE, = 10° V/Im , for instance, is of the order of.@°. The angle of rotatior
is small, thus, approximately linearly proportionalit@E,. When sufficiently long
crystals are used, this rotation of tké€Y’ plane is what what induces a change in the

tan2p =

(3.11)

5At a wavelength of 546 nrm, = 1.5266,ne = 1.4808, and 43 = 23.76pnV L.
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birefringence between the two orthogonal linear polarisations: alon¥'thagis and
along theY’Z’ plane. For rays that propagate af 4&ith respect to the optical axis,

Z', the change of birefringence is equal (e — ny)¢. If the total crystal length is

of the order of 10 cm an&, = 10° V/m is applied, the retardation change between
ordinary and extraordinary rays is of the order pfnd . For a crystal thickness of 4
mm, the corresponding half-wave voltage is approximately 200 V, which was in good
agreement with the experiment.

According to Eqg. 3.10, the principal refractive indices should also change, and they
become

Ny = Ny = No, (3.12a)
1

Nyr = Ny — éngulEX, tang, (3.12b)
1

Nyr = Ne+ EngulEX/ tang. (3.12¢)

But with ¢ being approximately linearly proportionaltg,E,/, this change is of second
order inEy .

During the assembly of the experimental system, the tip-tilt alignment of the modula-
tors was made by ensuring that the light beam was not vignetted by the Pockels cell
and making the light propagate through as close as possible to the centre of the clear
aperture. Two polarisers and a photodetector were used for the alignment of the az-
imuth angle. The first Pockels cell was placed between a linear vertical polariser on
the entrance side and a linear polariser atdtthe exit, see Fig. 3.7; after the latter,

a photodetector connected to an oscilloscope measured the intensity of light while a
sinusoidal voltage was being applied to the modulator.

- ociof
awec
u‘V

Detector

Pockel's 1 P45

450

Glan-Taylor 90°

Figure 3.7: Azimuth alignment of the first Pockels cell. The modulator was placed between two
polarisers as shown; The modulation of the intensity signal measured by the detector was minimum
when theX’ axis or theY’Z’ plane of the Pockels cell were aligned af 45

The nominal half-wave voltage of the first modulator, (Serial number: 20950) accord-

43



3. Experimental setup I: Mueller matrix polarimeter

ing to the manufacturer test sheet, was 220 V at 633 nm wavelength. This is approxi-
mately equivalent to 189 V at 532 nm. Being careful of not inducing an integer multiple
of aA/2 retardation, a 1 KHz sinusoidal voltage signal of 1Qf) Was applied to the

first Pockels cell. The modulation of the intensity measured with the photodetector
changed when adjusting the azimuth angle of the Pockels cell, and it became a mini-
mum when the modulatorX¥’ axis, shown in Fig. 3.7, was placed af4% —45°. The
azimuth angles0and 90 had already been identified using crossed polarisers. Figure
3.8 shows two oscilloscope graphs of the sinusoidal voltage applied to the Pockels cell
and the optical signal when the alignment was considered best. The alignment was
done using only the AC component of the optical signal, Fig. 3.8(a); the full optical
signal (Optical power-100 uW) is shown in Fig. 3.8(b).
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Figure 3.8:0scilloscope measurements from the alignment of the azimuth angle of first Pockels cell.

The red plot shows the optical signal measured with a power meter when the first Pockels cell was

aligned at 45 between a linear vertical polariser and a linear polariser at #be blue plot shows the

applied sinusoidal voltage monitored from the first Pockels cell amplifier (SN028). (a) AC component of

the optical signal; the origin of the vertical axis is in the middle of the grid. (b) Optical signal including

the DC component; the origin of the vertical axis is at the bottom of the graph. The scales of the graphs
are indicated in each legend.

When the second linear polariser was settafid al /4 wave-plate (QWP) at 45vas
introduced it was identified whether the Pockels cell axis found was fast or slow; that
is, if the retardance induced to the modulator increased or decreased when augmenting
the applied voltage. Finally, the fast axis of the first modulator was aligned® a8

the same method, with the corresponding orientation of the polarisers, was used to set
the fast axis of the second Pockels cell to 0

The amplitude and DC offset of the sawtooth voltage signals applied to the Pockels
cells were determined experimentally. Each Pockels cells was placed between two
crossed polarisers, with the entrance one set tomth respect to the already aligned
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fast axis of the corresponding modulator. Initially, a sawtooth signal with amplitude
equal to the nominal half-wave voltage was applied to the Pockels cell, and an os-
cilloscope monitored the applied voltage and the detected intensity after the second
polariser. The amplitude and bias of the sawtooth signals were then adjusted to match
the desired retardance modulation defined by Eq. 3.7. When the amplitude of the
applied voltage induced the desired retardance modulation of amplitude equal to half
a wavelength, the sawtooth signal emulated a continuously increasing retardance. A
16 bit PCI card was used to generate the sawtooth signals using 256 points for each
modulation cycle (see subsection 3.3.2). The amplitude of the sawtooth was fine tuned
until the retardance gap between the last point of one period (a maximum) and the first
point of the following (a minimum) wag — 2L56- This is, until the detected intensity
signal appeared to have no discontinuities between any two sawtooth periods, see Fig.
3.9.
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Figure 3.9:0scilloscope measurements from the adjustment of the amplitude of the sawtooth signal
applied to the second Pockels cell. The red plot shows the optical signal measured with a power meter
when the second Pockels cell was aligned @ &ween a linear polariser at4&nd a linear horizontal
polariser. The blue plot (not distinguishable because it overlaps the vertical axis) shows the applied
voltage signal at the time of the end of a sawtooth period and the beginning of the following. Only
the intensity at 10 out of the 256 points that formed a complete modulation cycle are shown, see Fig.
3.10(b) for a full period graph. (a) Optical signal with the sawtooth amplitude of the modulation smaller
than%; (b) Optical signal with the sawtooth amplitude corrected to m%{ch

The intensity graphs on Fig. 3.9 show a narrow time interval of the whole retardance
modulation cycle, before (a) and after (b) the adjustment of the voltage amplitude.
Note the time scale of both figures and compare them with Fig. 3.10(b), where a full
cycle is displayed after the amplitude and bias had been adjusted.

The DC bias of the sawtooth signal was fine tuned until the AC coupled intensity signal
detected after the second polariser was zero at the time each sawtooth period started.
Figure 3.9(b) shows an oscilloscope reading after the amplitude was set correctly, but
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3. Experimental setup I: Mueller matrix polarimeter

the bias still needed to be adjusted. The vertical axis on the oscilloscope screen indi-
cated the beginning of a sawtooth period. On Fig. 3.10 the oscilloscope reading of the
fully adjusted applied voltage and the optical signal is shown on two different scales.
The first graph (a) shows the scale used in the laboratory for the fine tuning of the
bias; the vertical axis indicates the beginning of a sawtooth period. The second plot
(b) displays a complete modulation period where now the origin of the horizontal axis
indicates the middle of a sawtooth period.
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Figure 3.10:0scilloscope measurement once the voltage amplitude and bias applied to the second
Pockels cell was finely tuned to match the retardance of Eq. 3.7a. Both graphs show readings of the
same two signals: applied voltage (blue) and light intensity signal (red). The scales between (a) and (b)
are different by a factor of 50 for the applied voltage graph, and by a factor of 5 for the light intensity
graph. The time scale of (b) is 40 times the time scale of (a). It is important to note that the origin of
the horizontal axes do not represent the same time. In (a) the vertical axis indicates the beginning of a
sawtooth. In (b) the origin of the horizontal axis indicates the middle of a sawtooth period.

3.2 Polarisation State Analyser: PSA

For every state of polarisation that was incident on the sample, a Division of Amplitude
Polarimeter (DOAP) was used to simultaneously measure the complete Stokes vector
of the light that was scattered from the sample. A schematic diagram of the PSA is
shown in Fig. 3.11. A non-polarising cube beam-splitter (Newport 10BC16NP.3),
Bs2, divided the beam into two equal branches. Along the first branch a polarising
cube beam-splitter (Newport 10BC16PC.3), PBs4, was used to direct horizontal lin-
early polarised light to photodetector D1, and linear vertically polarised light to pho-
todetector D2. In the second branch, another non-polarising beamsplitter cube, Bs3,
divided the light again, without changing the state of polarisation of the initial beam to
be measured. For these last two branches a polariser with its axis at 45 degrees, P45,
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3. Experimental setup I: Mueller matrix polarimeter

was placed before the photodetector D3; and the combination of the beamsplitter, a
guarter-wave-plate with its fast axis at 45 degrees, and a linear horizontal polariser re-
sulted in a right-circular polarisation analyser placed in front of the photodetector D4.
The photodetectors D1-D4 (Si/PIN New Focus model 2001) that measured the 4 opti-
cal signals were connected to the same data acquisition board (iotech Dagboard/2000)
that was used to generate the voltage signals that modulated the retardance of the two
Pockels cells. The two analogue outputs of the board were updated synchronously
relative to the four scanned input signals.

Figure 3.11: Schematic experimental polarisation state analyser within the confocal polarimeter.
Bs2: Non-polarising beam-splitter, PBs4: Polarising beam-splitter, Bs3: Non-polarising beam-splitter,
P45; Polariser with axis at 456QWP: Quarter-wave-plate with fast axis af4B0: Polariser with axis
horizontal, D1-D4: Photodetectors. Faded area covers the polarisation state generator and the confocal
optics which are described in section 3.1 and chapter 5 respectively.

Since the introduction of the first DOAP by Azzam in 1982 [75], a number of pa-
pers concerning the optimisation, calibration, performance and application of different
DOAPs have been published [103, 76, 104, 78, 105, 67, 79, 106, 107]. Its principle
of operation is well understood and rather simple. In the remaining of this section the
details concerning the particular DOAP we implemented will be discussed.

3.2.1 Mathematical modeling of the PSA

Each of the 4 polarisation analysers in front of the photodetectors D1-D4 can obviously
be represented by a Mueller matidet; (for i = 1,2,3,4). The interaction with the
light scattered from the samp8,;, which we wanted to measure, resulted in
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3. Experimental setup I: Mueller matrix polarimeter

Soet = Det - Sout, (3.13)

for each photodetector.

Figure 3.12 shows a diagram of the polarisation analysers in the DOAP. Detector D1
is preceded by a linear horizontal analyser; detector D2 by a linear vertical analyser;
detector D3 by a linear analyser with axis at 4&nd detector D4 by a beam-splitter
reflection and a right-circular polariser which results in a left-circular polarisation anal-

yser.
D2
Linear - Vertical
P45
D2

Linear - 450

D1
Linear - Horizontal
PBs4 "
&' Bs3
A
Qwp
D4
Bs2 PO Right - Circular

Figure 3.12:Polarising elements of the PSA that define the4tdetection matrisD. Bs2 and Bs3:
non-polarising beam-splitters; PBs4: polarising beam-splitter; QWP: quarter-wave-plate with fast axis
oriented at 45; PO and P45: linear polarisers with axis atahd 45 respectively; D1-D4: photodetec-

tors.

Since it is only the intensity of light that can be measured by each detector it is only
the first Stokes component 8fe; that it is possible to detect, and therefore it is only

the first row of each of the four matric&et; that becomes relevant in the modeling

of the polarisation state analyser. The light intensity measured by each photodetector
became then

Ih %(1 10 0) Sout (3.14a)
|2:%( 10 o) St (3.14b)
I3=%< 1 o) Souts (3.14¢)
Iy = i(l 00 1)  Sout. (3.14d)

Note that the second beam-splitter required for detectors D3 and D4 decreases the
detected intensity by a factor of 2 with respect to detectors D1 and D2 and this explains
the scalar factors o§ in Egs. 3.14c and 3.14d.

The last set of equations is best represented as one matrix equation in the same way it
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3. Experimental setup I: Mueller matrix polarimeter

was originally introduced by Azzam [75],

| = = Dpsa- Sout- (3.15)

where the matriXDpga is clearly not a Mueller matrix and it is often called the PSA
instrument matrix. For the configuration we implemented,

1 1 00
1 1 -1 0 O
D = — 3.16
PSA= 5 1 01 o0 (3.16)
1 1
2 003

It is evident that in order to determine unambiguously the full Stokes vegiqr.the
instrument matrixDpsa must be non-singular, and the same is required in Mueller
matrix polarimetry. For every input state of polarisation used to probe the sample, the
complete Stokes vector of the light returning from the sample must be measured.

The condition number of the instrument matrix is a valuable figure of merit when
evaluating the noise sensitivity of a Stokes polarimeter that acquires 4 measurements.
The condition number for the matrRpga is

condDpsa) = 3.61 (3.17)

The more distant the states of polarisation, which represent the eigenvectors of the
analysers in the DOAP, are from each other on the Poincaré sphere, the less suscepti-
ble to systematic errors the polarimeter becomes, and the better the sensitivity of the
instrument. Nevertheless, the condition number is not the only parameter to establish
the noise sensitivity and accuracy of an experimental Mueller matrix polarimeter.

3.3 Obtaining a Mueller matrix

Three slightly different configurations for illuminating the sample within the Mueller
matrix polarimeter were implemented throughout this work: two of them in reflection
and one in transmission. The three arrangements are depicted in Fig. 3.13. The dif-
ference between the systems in Fig. 3.13 (a) and (b) is only the order of the reflection
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and transmission passes through the beam-splitter For the transmission version,
shown on Fig. 3.13(c), the beam-splitter was removed, but the obje@ijesand

Obj3 and the pinhole were kept in place. Polarisation sensitive axial sectioning was
clearly not possible in the transmission arrangement of Fig. 3.13(c); this configuration
was built in order to investigate the isolated effect of using a pinhole in the detection
branch of the instrument, refer to subsection 5.2.2. Figure 3.13(a) shows the branch
for which the confocal microscope was implemented (see chapter 5) and it will be
referred to as theamplebranch. Envisaging that a future version of this instrument
may be used in an environment such as in clinical diagnosis, where ease of operation
is more critical than in a research laboratory, the branch shown in Fig. 3.13(b) can
be used for calibration purposes as will be shown in subsection 4.2.2, and this will be
called thecalibration branch.

PSA

(a) ;‘ Obj ®) é{ Obj
Branch No.1  ~ I3 BranchNo.2 = bj 3
Ph Ph
Light direction Ob]2 Light direction Ob12
PSG ' B PSG = { M2
Stop sample
sample
M
Light direction sample
(©) PSG | i - e
Transmission Stop Obj2 Ph Obj3

Figure 3.13:The three different configurations of the sample illumination end in the Mueller matrix
polarimeter that were built throughout this work: g@mplebranch, the one chosen for the measurement
of samples with the reflection confocal microscope;aljbration branch, the one that is used in the
two-branch calibration method of subsection 4.2.2; (c) the polarimeter in transmission.

In actual fact, the resulting PSG for teemplebranch was different from the PSG for
the calibration andtransmissiorconfigurations by a reflection Mueller matfix Sim-

ilarly, the PSA for the calibration branch was different to the PSA forsdn@pleand
transmissiorsetups. These differences can be easily taken into account by introducing
the multiplication of a reflection Mueller matrix (see Eq.2.5) to the left of the PSG
Stokes vectoBssg of the samplebranch, and to the right of the PSA detector matrix

of thecalibration branch as it will be shown below.

The general case of the sample Mueller matrix that was measured can be written as

6]t was assumed, as a first approximation, that the objective lenses did not affect the polarisation of
light.
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MM sample= , (3.18)

where all the coefficientsy; may be linearly independent. Using Egs. 3.5 and 3.16,
which represent the PSG and PSA of the Mueller matrix Polarimeter, it follows that,
in the absence of errors, the intensity vector defined in Eq. 3.15 became a function of
time given by

I (t) = Dpsa- Bslout- MM sample BS1n - Srsdt), (3.19)

whereBsl, andBsl,; are theBs1l beam-splitter Mueller matrices that depended on
the configuration used. These matrices were either thd 4dentity matrixl 4.4, Or
the Mueller matrix of a reflectioMirror that appears in Eq. 2.5.

Mirror sample
Bs = . Samp - (3.20a)
l4x4, calibration and transmission

I sample and transmission
leout:{ 4x4, SAMP 158! (3.20b)

Mirror ,  calibration.

SettingBsl, = Mirror andBslyy: = | 444 for the case of theamplebranch, and after
some algebraic manipulation, the intensity ved{oy in Eq. 3.19 can be found to be

1 1 1
l1(t) :é(m11+ Mp1) + Z(ml3+ Mp3) COY ot ) + Z(ml3+ Mp3) co 3ot

1 . 1 ) 1 .
+ Z,(m14+ Mp4) Sin(awot) + E(mzer my2) sin(2aot) — Z(m14+ Mp4) Sin(3wot);
(3.21a)
1 1 1
Io(t) :E(mll —Mpy) + Z(m13— Mp3) cog wot) + Z(ml3_ Mp3) cog 3awpt)
1 . 1 ) 1 .
+ Z(m“_ Mpg) Sin( gt ) + §(m12 — Mp) sin(2agt) + Z(mz4— My4) Sin(3wot );
(3.21D)
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I3(t) =1(m11+ Mg1) + %(m13+ Mmg3) cog wot) + }(m13+ Ma3) COg 3t )

4 8
+ o (M M) SN +  (Ma-+ M) SN(200t) — = (Mha -+ M) Sinf Bt
(3.21c)
1 1 1
l4(t) :Z(m11+ ma1) + é(m13+ my3) cog apt) + é(m13+ my3) cog 3mot)
+ o (M M) SN + (e -+ Mez) SN(200t) — = (Mha -+ M) in(Bat).
(3.21d)

This set of equations is only valid for tleamplebranch configuration, however, the
analysis for the other two cases is very similar, and also the resulting equations, which
will not be shown here.

The set of Egs. 3.21 includes the 16 unknown Mueller matrix coefficients of the sam-
ple, and the harmonics that constitute the modulated intensities recorded by each of
the 4 detectors is a well defined finite set. All the information needed to calculate the
Mueller matrix of a sample is concentrated in the Fourier amplitudes of the frequencies
0, mg, 3mg of the cosine terms, anty, 2wy, and 3vg of the sine terms. One advantage

of the combination of the PSG and PSA described here is that the remaining Fourier
coefficients were always zero, independent of the sample measured or the calibration
matrices that will be discussed in section 4.2.

3.3.1 Theoretical performance and optimisation of the PSG and
PSA

As was mentioned before, in subsection 3.1.1, the condition number of the PSG and
PSA matrices can be used to evaluate the theoretical performance of polarimeters that
do not take redundant measurements to over-determine the result. The performance of
the PSA can readily be evaluated and optimised through the condition number of the
matrix Dpsa. TO take such over-determination into account, the two parameters that
were introduced by Sabatlkat al. [12] in 2000 can be used: the reciprocal absolute
determinant (RAD), and the equally weighted variance (EWV).

R-1
RAD = I_!)l/[lj, and (3.22a)
]:
R-1
EWV = Z)l/ujz; (3.22b)
i=
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whereR is the rank of the PSA or PSG, apg the non-zero singular valués

The RAD is a generalization of figures of merit based on the determinant for polarime-
ters that use more than 4 states of polarisation, and the EWV takes into account the
variances of the Stokes vector estimate [12]. For the introduction of the EWYV, Sabatke
et al. assumed that the noise between measurements was statistically independent, and
that all measurements had the same variance. They stated that these assumptions were
valid if the noise was signal-independent, or if the noise on the first component of the
Stokes vector dominated [12].

The PSG built during this work produced 256 states of polarisation per modulation
cycle of the Pockels cells. Nevertheless, it was shown, in section 3.3, that, when
combined with the PSA, all the information of the Mueller matrix of a sample was
contained in 24 Fourier coefficients, 6 for each detector. Equations 3.21 show that the 6
coefficients correspond to the amplitudes of the same frequencies in the 4 detectors: 0,
o, and 3ug, for the cosine components, amg, 2wy, and 3vg of the sine components.

By simple inspection of Eqns 3.21, Eq. 3.19 can be rewritten as

1
cosmot
€0S Jupt
sinwgt
sin 2ot
sin 3wgt
whereQ is a 4x 6 matrix that can be defined using Eq. 3.5. Substituting the explicit
time varying retardance#y; andA, (Egs. 3.6), into Eq. 3.5, and using some basic
trigonometric identities, the matri@ can be determined from

I(t) = Dpsa- Bslout- MM sampie BSlin - Q- ; (3.23)

1
1 Cosmgt
Ssdt)= |, S —q| e (329)
—5(coswpt + cos Jupt) Sinwgt
3(— sinawot + sin 3wot) sin 2wt
sin 3wpt

Clearly, for the chosen configuration of the PSG,

"For complete polarimeters R is always 4.
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1 0 0 0 00O
0O 0 0 0 10

- : 3.25

° 0O -1 -3 000 (3.25)
O 0 0 -3 0 3

and this is the matrix that can be used to evaluate the sensitivity of the PSG to errors in
the calculated Fourier amplitudes. This matrix could be used, for instance, to optimise
the azimuth angles of the Pockels cells in the PSG. If it is assumed that the 6 Fourier
coefficients can be measured with the same precision from the modulated intensities
I(t), an optimal configuration can be chosen as the one that minimises one or more of
the figures of merit: condition number, RAD, or EWV. However, if the precision on
the measurement of the Fourier coefficients is not similar, balancing the rQatniaty

result in the amplification of the noise of the less precise coefficients.

For the polarimeter implemented in this work, the figures of merit of the m&lrix
were: RAD, = 2, EWVq = 6, and condition number /2. The smaller these fig-

ures the less sensitive to errors the configuration becomes. For comparison, the val-
ues for the 4 Stokes vectors tetrahedron configuration, shown below in Eq. 3.26,
are RADrhetrahedron= 0.32, EWVetrahedron= 2.5, and it was mentioned before that
cond Tetrahedron = /3.

1 1 1 1
—0.58 —-058 058 058
Tetrahedron= (3.26)
—-0.38 038 073 -0.73

-0.72 072 -037 037

The comparison should be done carefully. Calculated from the n@tmone of these
figures of merit contain information of how the Fourier coefficients were computed.
That is, for instance, about how many modulation cycles were used to calculate the
Fourier amplitudes, or how many samples were taken during each modulation cycle,
which was expected to have an impact on the precision of the measured coefficients.
These numbers provide a good estimate of how sensitive the design of the polarimeter
can be to errors in what is considered the raw data. If two different polarimeters do
not measure the same type of raw data, a simple comparison of the figures of merit
could lead to erroneous conclusions. On the other hand, these 3 figures of merit are
a valuable tool in the optimisation of a particular type of polarimeter. In the case of
the polarimeter built during this work, as mentioned above, they can be used to op-
timise the azimuth orientation of the Pockels cells. After a numerical computation,
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it turns out that choosing the azimuths®4&nd 175°, respectively for the first and

the second Pockels cells, the three parameters are minimised to the following values:
RADpsg,pr = 1.84, EWVpsg,er = 5.50, and confQpsg,-;) = 1.23. This configura-

tion, however, was not implemented in the experimental instrument.

Further analysis is necessary to evaluate the performance of a Mueller matrix polarime-
ter, but that falls beyond the scope of this work. The design of a polarimeter is often
driven by requirements other than mathematical performance. Ease of operation, lack
of moving parts, high speed of the measurements, and cost, for instance, may some-
times compromise the optimisation of the device. Additionally, the compatibility of the
PSG and the PSA of a system should also be evaluated, but that comprises part of the
future work that will be proposed at the end of this Thesis. It is worth mentioning here,
however, that De Martinet al. have already reported a method for designing opti-
mised Mueller matrix polarimeters, based on the minimisation of the condition number
of the PSG and PSA [97]. The applicability of their method, to complete polarimeters
that make more than 16 intensity measurements, may need to be studied further. The
condition number may not be the only parameter that should be minimised.

3.3.2 Modulation parameters and data acquisition

The analogue to digital signal acquisition board (Dagboard/2000) could operate at a
maximum sampling rate of 200 kHz distributed among the number of input channels
used. Every time the modulation of the Pockels cells was started, a time delay of 5
seconds was introduced in the acquisition routine before the first measurement of the
four photodetectors was recorded. This was done in order to let the voltage signals
supplied by the Pockels cell amplifiers stabilize. For this reason, a fifth analogue input
channel of the board was used to monitor the beginning of every retardance modulation
cycle. The signal acquisition speed was limited by a maximum sampling rate of 40 kHz
for each of the five input channels. Using the maximum detection sampling rate of 40
kHz and arbitrarily choosing®data points for every retardance modulation cycle,
the Discrete Fourier Transform (DFT) vector of the recorded signal was calculated
at frequency intervals of 156.25 Hz. This determined the experimental value for the
modulation angular frequenay, that was defined in Eq. 3.7.

wo = 2n - (156.25 Hz) - rad/cycle (3.27)

In order to reduce the influence of random experimental errors, every measurement

55



3. Experimental setup I: Mueller matrix polarimeter

consisted of a sequence of 8 modulation cycles. The acquisition time for the data
used to calculate a complete Mueller matrix was 51.2 milliseconds. Figure 3.14 shows
graphs of typical experimental raw data as measured with the four photodetectors of
the DOAP. The data was taken using templepolarimeter configuration and the
measured sample was Air, that is, no sample was placed in the polarimeter.
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Figure 3.14 Experimental raw data for Air (no sample) using #aenpleMueller matrix polarimeter.
Graphs on the left contain the raw data signals recorded with the four photodetectors; the dots corre-
spond to individual values, and the black dashed line is the retardaifigegenerated with the second
Pockels cell. Graphs on the right show the Fourier series coefficients for each signal at the first 50 fre-
quencies sampled by the DFT. The blue circles and the red dots indicate the amplitudes of the cosine
and sine terms respectively.

The dots in the graphs of the detected signals shown in the left column of Fig. 3.14
correspond to individually measured intensity values. The error bars were smaller
than the marker size. The black dashed line in the four signal graphs corresponds
to the monitor signal (fifth analogue input channel) of the voltage function sent to

the amplifier of the second Pockels cell. The monitor signal was measured in volts,
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however, for ease of interpretation, it was scaled to show the equivalent retardance
Ay (t) applied to the second Pockels cell. This line is the same in all four graphs.
The eight modulation cycles recorded during each acquisition are shown, and they
correspond to 2048 data points.

For every recorded intensity signal, the Fourier amplitude coefficients at integer multi-
ples of the frequenc§'%4“8Z were computed using the FFTW algorithm built in Matlab
6.5. The graphs on the right column of Fig. 3.14 show the first 50 cosine and sine
amplitudes, blue circles and red dots respectively. In accordance with Egs. 3.21 the
cosine amplitudes of the angular frequencieag),and 3vy, and the sine amplitudes

of wy, 2mp, and 3y from the 4 detected signals were used to build an over-determined
set of 24 simultaneous equations and 16 unknowns. The best approximate solution, in
the least square sense, of the set of simultaneous equations was found to obtain the 16
non-calibrated Mueller matrix coefficients of the measured sample. Using data similar
to that displayed in Fig. 3.14 the non-calibrated mean Mueller matrix of 10 subsequent
measurements of Air and the standard deviation for each coefficient were

6121 0389 Q005 Q023

0385 5630 -0.075 Q783

Air i = : 3.28a
non-calibrated 0685 —1.158 —6.493 1578 (3.283)

—0.446 —-0.604 Q275 -5.239

0.005 Q007 Q008 Q006
. 0.004 Q004 Q004 Q002
SD(AInon-calibrated = | 005 0002 0004 Q005 |° (3.28b)

0.002 Q002 Q005 Q004

A second example of the intensity signals acquired from a sample, in this case using
a linear horizontal polariser, is shown in Fig. 3.15. In the absence of instrumental
errors and if the axis of the linear horizontal polariser had been aligned exactly at O

it is evident that the signal recorded with the linear vertical detector should have been
always zero.

The small signal modulation in the vertical-detector signal shows that an adequate
calibration method was necessary to isolate the errors produced by the instrument op-
eration from the inaccuracy of any assumptions made about a sample when the sample
is being used to calibrate the system. Such a calibration method had already been pro-
posed by Compaist al. [11] in 1999. This method and the modifications required for

its implementation in our system are described in the following chapter.
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Figure 3.15:Experimental raw data for a linear horizonal polariser as measured usirsguthge
Mueller matrix polarimeter. The legend is the same as for Fig. 3.14.
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4 Calibration: Double-pass
eigenvalue calibration method

(DP-ECM)

The calibration method played a key role in the validation of the experimental results
obtained in this thesis. It corrected all linear systematic errors introduced by the optical
components in the non-confocal polarimetry measurements, and since the calibration
of the system was made in the exact configuration in which the polarimeter was used
to obtain Mueller matrix measurements, it did not require two independent calibration
routines, one for the PSG and one for the PSA. This advantage ensured that, after cali-
bration, no additional optical elements were introduced (or removed) that could mod-
ify the state of polarisation of the incident or detected light. In addition, two different
matrices were computed to account for the linear errors in the PSA and the PSG in-
dependently. The calibration routine was based on the Eigenvalue Calibration Method
(ECM) developed by Compaiet al. in 1999 [11], also described by De Martimb

al. in 2003 [73]. A necessary modification to the original ECM was introduced in
this work to extend its applicability to double-pass measurements. In this chapter we
include a description of the original ECM (section 4.1), which was applied to calibrate
the matrices of samples measured withtiia@smissiorpolarimeter, and the resulting
Double-Pass Eigenvalue Calibration Method (DP-ECM in section 4.2) that was imple-
mented in thesampleand calibration configurations of the confocal Mueller matrix
polarimeter.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

4.1 Single-pass-ECM (original ECM)

Any experimental non-calibrated>44 matrix Bsamplid Similar to that in Eq. 3.28a,
or any raw data x m measurement matrix, can be represented as in equation 1 of
reference [73] by the product:

Bsample: A-MM sample‘W- (4-1)

The matricesNV andA contain the system errors associated with the PSG and PSA
respectively, and they may also contain all the polarimetry information associated with
the specific design of the PSG and the PSA. In the latter case, these two matrices may
not be 4x 4 matrices [11]. In this work, the raw data recorded from every measurement
was first processed to compute a non-calibrated Mueller matrix using the method de-
scribed in section 3.3. For this reasdéhandA represented theX¥ 4 Mueller matrices

that contained only the systematic calibration information of the system. The determi-
nation of these two matrices was the paramount result of the calibration method. In
the hypothetical situation where no systematic errors had been present in the measure-
ments, each of the matric®¢ andA would have become the>44 identity matrix. In

reality, these two matrices were not equal to the identity matrix, but since the Mueller
matrix polarimeter was complete, both of them were always invertible, and this is a
necessary condition for the implementation of the ECM. In mathematical terms this
signifies that it was required thBtampleaNdMM samplewereequivalentmatrices.

In any of the setup configurations, four measurements of known samples were used
in the calibration routineBy, air (no sample)B;, a linear horizontal polariseB,,

a linear vertical polariser; anB3, a 532 nm zero-order quarter-wave-plate for the
transmissiorconfiguration, or a 633 nm third order quarter-wave-plate for the double-
pass calibration. The second wave-plate becam®.26A4 seventh order wave-plate

for 532 nm in double-pass. Both sets of calibration samples are complete in the sense
that it is possible to determine the two calibration matrices without ambiguities.
According to the original ECM, the polarisation characteristics of the calibration sam-
ples can be experimentally measured from the eigenvalues of the product of the inverse
of the measuremeidg (air) and the corresponding non-calibrated matrix of the sam-
ple. Since the Mueller matrix of air was assumed to be the identity matrix, the three
products became

Ci=Bo 1'Bi=(A-W) - (A-MM{-W) (i_153. (4.2)
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

In the absence of experimental errors, the eigenvalu€s afe the same as the eigen-
values ofMM , given that the eigenvalues of a product of matrices do not depend on
the order of the product. The eigenvalues of these experimental measurements were
therefore used to characterize the calibration samples under the assumption that the
polarisers behaved as ideal polarisers, and the wave-plates only introduced linear re-
tardation and linear diattenuation.

The transmittance for non-polarised light of each of the polarisers was calculated from

1
T = ztrace(ci) (i=1,2) (4.3)

and their Mueller matrices were assumed to be as in Eq. 2.9. In practice, this value
was compared, for a consistency test, to the dymr,/», of the eigenvalues that appear

in Egs. 2.8.

The calibration wave-plateBg) was assumed to be ideally represented by a Mueller
matrix P(t3,Ws,A3), like the one defined in Eq. 2.6. Using Egs. 2.8 the parameters
that characterizeMM 3 were experimentally calculated as:

1
=5 (b1+02); (4.4a)
W3 = arctan\/E ; (4.4b)
12,
1 (3
N3 = > arg<a> , (4.4c)

where/; were the measured eigenvalues¢ts, W3, Az) (see Egs. 2.8) obtained from

the matrixCs. The calculated eigenvalues iV 3 should not depend on the azimuth
orientation of the measured quarter-wave-pigbet this was not tested experimentally.
Another consistency test was made by compaligg and|/4|? to the product/>.

Subject to the determination of the orientation of the calibration samples, the three
Mueller matrices that represented the experimental calibration samples were:

Lin mathematical terms, a rotation of a polarisation optical element along the optical axis is repre-
sented by asimilarity transformation (in this case alsmitary) that operates on the original Mueller
matrix. The eigenvalues of a matrix do not change after such transformations.

61



4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

MM 1 = Rot(6,) - Pol(t1) - Rot(—61), (4.5a)
MM , = Rot(6) - Pol(1) - Rot(—62), and (4.5b)
MM 3 = RO'[(93) . P(T3, ng,Ag) . RO'[(—93). (4.5¢)

In the laboratory, the angle®, 6,, and 63 were chosen to be°Q90°, and 30, re-
spectively, as in [73]. Despite careful alignment, these angles were subject to small
experimental errors. However, the ECM was designed to take this into account, and
the calculation will be explained later in this section.

Using the experimental matrice€;j and the constructed matrices in Eq. A% was

equal to the unique solutioiX] of the simultaneous set of linear equations

MMi-X—=X-Ci=0 (=123, (4.6)
as indicated in [11]. To this effect, the matkit was considered to be the X6 vector
solution to the set of simultaneous linear equations

—

Hi-X=0 (=123 (4.7)

whereH]; were 16x 16 matrices that represented the linear mapping

Hi:X —MM;i-X=X-Ci (=123 (4.8)

The solutionW to Eq. 4.7, in the least-squares sense, was found by calculating the
unique eigenvector associated with the null eigenvalue of thelBpositive symmet-
ric real matrixK defined by

K =HJ - Hj + HJ - Hy + HJ - Ha. (4.9)

Prior to the calculation o¥V, the real azimuth orientation of the calibration samples
was determined. The anglés, 6,, and63 were corrected by minimizing the ratio of
the smallest to the second-smallest eigenvalues of the mafgpagya three-variable
function. The minimum was found using the simplex algorithm in fimensearch
function of Matlab 6.5. Using the corrected set of angles,Khmapping was built
again, and the unique eigenvector in the null sps¢ewas found.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

The determination oA followed straightforward from Eg. 4.1 and
A=By-WL (4.10)

Once the matrice¥/ andA were found, the calibration of any measurement required
multiplying Bsample in Ed. 4.1, byA~1 on the left, and by~ on the right, to obtain
Mueller matrixMM sample

4.2 Double-pass-ECM

The DP-ECM consisted of the same 3 main steps required in the original single-pass
version.

1. Four calibration measurements were tak®&s B, B, andB3).

2. The Mueller matrices that represent the samples were calculated using the eigen-
values of the matrice§; (i = 1, 2, and 3) defined in Eq. 4.2.

3. The calibration matrice®¥ and A, were found from the solution of the set of
simultaneous linear equations in EqQ. 4.7.

The double-pass measurements, however, originated one further mathematical con-
strain in the calculation of the Mueller matrices in step 2. The commutativity of the
eigenvalues of a matrix product with respect to the order of the factors was no longer
sufficient to determine the parameters that characterized the Mueller matrices of the
measured calibration samples. The details will be explained in the following para-
graphs.
In the double-pass configurations of the polarimeter, the light passed twice across the
measured sample, propagating in opposite directions. For these measurements, an
additional mirror in thesampleandcalibration configurations of the setup was intro-
duced, see Fig. 3.13. Hence, instead of Eq. 4.1, the equation that represented a general
experimental double-pass measurement was

B  —A.MMZ__-Mirror -MM L .W. (4.11)

sample — sample sample’

The plus and minus signs indicate the direction of light when passing through the
sample, and the "dp" superscript stands for "double-pass”. The plus sign corresponds
to the first pass, when light propagated towards the mirror, and the minus sign to the

63



4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

second pass, when light had been reflected and travelled away from the mirror, towards
the PSA. The mirror matriMirror in Eq. 4.11 represents a dielectric mirror with a
nominal reflectivity greater than 99.9% on which the angle of incidence WwasHhis

mirror was assumed to be ideal and its Muller matrix represented exactly by Eq. 2.5.
As mentioned in the previous section, four measurements were also taken in the cali-
bration routine (step 1): aing; two linear poIarisersB‘iIp (horizontal) ancBgp (verti-

cal); and a 633 nm third order quarter-wave-plate that became a 532 nm seventh order
—0.26A retardation pIateng. It was assumed that the samples had the same behaviour
in the forward and backward propagation. The 633 nm third-order quarter-wave-plate
was aligned at 30with respect to the first-pass coordinate system. The fast axis of
the retarder was therefore aligned at 8@iring the first-pass and at30° during the
second-pass. Apart from this difference in orientation, the wave-plate was assumed to
be a 633 nm third-order quarter-wave-plate in both directions.

The characterization of the calibration samples, step 2, required the computation of the
products

cP— (BSF’)_l-B?p: (A-Mirror -W)~1.(A-MM| -Mirror -MM " -W) (_1,3;

(4.12)
and the commutativity of the eigenvalues with respect to the order of the factors was
sufficient to ensure that

eig(C™) = eig(Mirror -MM -~ - Mirror -MM "), (4.13)

where eigC) refers to the eigenvalues of the mat@x Nevertheless, Eq. 4.13 is

not sufficient to associate the calculated eigenvalues to the eigenvalues of the Mueller
matrices of the calibration samples. A more detailed inspection of the matrix product
in the RHS of Eq. 4.13 allowed to overcome this difficulty.

Choosing the coordinate system of the first-pass of light across a calibration sample
(i), the Mueller matrices for each pass through the sample can be written as

MM * = Rot(6) - MM & . - Rot(—6), (4.14a)
MM = = Rot(—6;)-MM £, , - Rot(6)). (4.14b)

WhereMM (. ; is the Mueller matrix of the calibration sample aligned at @ith
these last two equations, and replacing the prodRat( 6;) - Mirror - Rot(6;) with
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

the resulting matriMirror , the double-pass Mueller matrix of a calibration sample
becomes

MM -Mirror -MM " = Rot(—6;)-MM g, ; - Mirror -MM g, ; -Rot(—6;). (4.15)

The single-pass Mueller matrices of the calibration samples] 2, and3), were
assumed to be of the same kind as in the single-pass ECM:;,Ah® two polarisers

were assumed to be ideally represented by a matrixPigkr) (Eq. 2.9), and the
retarder by a matrix lik€(t3, W3,A3) (EQ. 2.6). These two types of matrices commute
with theMirror matrix because, in both cases, the two2matrices contained in their
top-right and bottom-left corners are zero. One last re-arrangement of Eq. 4.15 leads
to

MM -~ -Mirror -MM ;" = Mirror -Rot(6))-MM {.;-MM & ;. -Rot(—6;).  (4.16)
Finally, using this last equation, Eq. 4.13 is equivalent to

eig(C™®) = eig(MM ;- MM ") = eig(MM P). (4.17)

The double-pass Mueller matriced ¥ idp) of the calibration samples and the calibra-
tion matrixW were calculated exactly as in the original ECM (section 4.1): the eigen-
values ofCiOIIO were used to characterize the calibration samplesVénaas found as

the unique vector in the null space of the linear mappkhg The azimuth orienta-

tion of the samples was also corrected by minimizing the ratio of the smallest to the
second-smallest eigenvalue of the mapgihgs a function oby, 6>, and6s.

OnceW was determined, the other calibration matixvas calculated from tthp
measurement.

= W™ =-Mirror . .
A =BP.wl.Mi (4.18)

At this point, the choice of coordinate system for the representation of the double-
pass measurements was made. The orientation of a calibrated Mueller matrix was
defined using the coordinate system of the first-pass. The azimuth angle of a linear
polariser set at 45n the first-pass, for example, becamd5’ in the second pass. An
experimental Mueller matrix, however, contained the information of the two passes
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

together. According to Eq. 4.16, the choice of the first-pass as a coordinate system
required that instead of the calibration matixa double-pass calibration matrix

A% — A . Mirror =B3P.w? (4.19)
was used. With this matrix, the calibration of a measurementﬂﬂg%plein Eq. 4.11
resulted in

(A%P)-1.8% (W)L =Mirror -MM_,__.-Mirror -MM £ (4.20)

sample’ sample sample

If the measured sample commuted with the malfixror , when rotated to Q the

RHS of this last equation becanwM ngp,e (see Eqg. 4.16), with the azimuth angle
defined as in the first-pass. If the sample did not commute with the nmMimiar , the

use ofAY instead ofA had no consequences in the data calibration because the matrix

Mirror is non-singular.

4.2.1 Choice of calibration samples

Different sets of calibration samples may be used in the ECM [11, 73], as long as their
Mueller matrices can be assumed to be of a well known type. The set of samples must
be such that only one eigenvalue of the mapgdfgs zero in order to determine the
calibration matrix without ambiguities. A suitable set of calibration samples had been
implemented by De Martinet al. [73] and was the one used in this work : two linear
polarisers (one horizontal and one vertical) and a linear retarder orientet at 30

The two linear polarisers were inexpensive polymer film polarisers (Newport 10LP-
VIS) with a typical extinction ratio of 5 x 10~4. They were oriented at’Cand 90,
crossed to the vertical and horizontal channels of the PSA respectively. The linear
retarder used was a 633 nm third order quarter-wave-plate that, in a double-pass mea-
surement, introduced an effective nominal retardance of approximately -0.26 waves
for the 532 nm wavelength that was used. This kind of retarder is an equivalent and
less expensive solution than a customised 532Ani& wave plate that could be used

as a double-pass quarter-wave-plate in the calibration. Furthermore, a custantised
wave plate was not necessary, as the actual retardance value was calculated during the
ECM.

The azimuth angle of the linear retarder that optimized the set of calibration samples
was calculated numerically by finding the orientation that minimized the ratio of the
smallest to the second-smallest eigenvalue of a simulated magpiiyis was done
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

by building the matrix of the mapping using the same theoretical matrices in both
terms of Eq. 4.6. That is, the mapping matrix was built assuming ideal values for the
calibration matrice®V andA. The 16 eigenvalues & are shown in Fig. 4.1 as a
function of the azimuth orientation of the linear retarder. Some of the eigenvalues are
equal. Using the 30vertical grid line in Fig. 4.1 as reference, there are 3 eigenvalues
that are always equal to the 4th-largest function plotted, 2 are always equal to the 6th-
largest, and 2 are always equal to the 10th-largest function plotted. This overlapping
is not relevant and attention should be only be paid to the smallest (red) and second
smallest (blue or green) eigenvalues. The red line represents only one eigenvalue that
is equal to zero for all angles. In the graph, the azimuth angl88{Rdf the linear
retarder is highlighted because at this angle the second smallest eigenvalue is largest.

SS I T T

e or ¢ 2nd-smallest eigenvalues

5
4.5
4
3.5

| ALl

K-mapping eigenvalues

7 SN SN & NS
0O 15 30 45 60 75 90 105 120 135 150 165 180
Fast-axis Orientation of 3 order 633nm-QWP (degrees)

Figure 4.1:Numerical eigenvalues of the linear mappiKgsee Eq. 4.9) in the DP-ECM as a func-
tion of the angle of the 633 nm third order quarter-wave-plate. The other two calibration samples had
previously been chosen to be linear polarisers, one horizontal and one vertical.

This orientation is therefore considered optimum for a calibration with two crossed
polarisers and a linear retarder since it isolates as much as possible the null-eigenvector
of the mappingK; making the calculation less sensitive to noise or small alignment
errors.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

4.2.2 Two-branch DP-ECM

An advantage of the DP-ECM is that a double-pass polarimeter can be calibrated using
a different optical branch than the used for sample measurements. Usicgitita-

tion andsamplebranches of the polarimeter once (see Fig. 3.13) is possible to obtain
the Mueller matrix of the beamsplitter that is part of the PSG and PSA. For any future
calibration one can choose which branch to use for calibration, and sincaiti@e
branch is intended to be used sometimes with an objective lens, the calibration on a
separate branch can result extremely useful. This is particularly true if the polarimeter
is modified for clinical diagnosis, where the calibration on a daily basis may need to
be automatized.

The four possible directions of light across the beamsplB®t are shown in Fig.

4.2. According to specifications, the beamsplitter was a non-polarising cube that could
be represented as the identity matrix in transmission and as an ideal mirror matrix
in reflection. Since errors in beamsplitter can be large [63, 108], it was important to
measure its Mueller matrices; one for each possible direction of light.

Light direction
—_—

Light direction
direction
sample

branch

(b) Bsly,

Light direction
—_—

Light direction

calibration “
branch

(c) Bsl,, (d) Bsl,,

Figure 4.2:The four possible paths of light through beamspligst. The matrix symbols, indicated
as the captions of figures (a), (b), (c), and (d), represent each of these 4 possiblBphitishe name

of the component and the subindicEsandR stand for transmission and reflection, respectively. The
non-polarising beamsplitter culBs1was part of both the illumination and detection parts ofsample
andcalibration polarimeters, as can be seen in Fig. 3.13.

The four measurements, however, were performed without moving the beamsplitter
from the exact position where it was used in the polarimeter. Two calibration routines
were sufficient to characterize the beamsplitter, one usingdhglebranch mirror

and one using thealibration branch mirror. The two calibration routines needed to be
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

performed under the exact same conditions.
As a result of aamplebranch calibration, the matric&s1z, andBslro (see Fig. 4.2)

dp This can be written In

were contained in the calibration matndﬁ@ammeandAsample

matrix notation as

Aggmplez A1 -Bslo-Mirror ,  and (4.21a)
Wsample= BS1r1 - Wy; (4.21b)

whereA; andW1 are the PSA and PSG calibration matrices, respectively, that do not
contain the beamsplitter error matrices.
Similarly, the result matrices of a calibration using taibration branch were

A% —A;1-Bslg-Mirror , and (4.22a)
Wealib = BSly1-Wij. (4.22b)

With this matrices stored electronically, any future calibration performed ircdlie
bration branch could be used on measurements taken isah®plebranch, and vice-
versa. ANEW calibration using thealibration branch was likely to produce different
calibration matrices depending mainly on how room temperature affected the voltage
amplifier signals and the Pockels cell retardances. A new calibration using the calibra-
tion branch, for example, produced

Aﬂ,pEWCa“b: Az -Bslgy - Mirror , and (4.23a)
WnNEwcalib= BSlr1-Wo. (4.23b)

In the ideal absence of noise, tREW calibration matrices for theamplebranch were
equal to

dp : dp dp \—1 Adp
ANEWsampIe: Az-Bslra-Mirror = Ay caiip (Acaiib) 'Asample and (4.24a)
Wiewsample= BSIrt - W2 = Wsample (Wcalib)_1 -WNEW calib (4.24Db)

As long as the polarimeter design did not change, the two pairs of "old" calibration
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matrices could always be used to swap from one branch to the other.

4.3 Evaluation of the calibration

The results of 10 calibration routines were compared to assess the accuracy and re-
peatability of the double-pass measurements usingrighlets-polarimeter(see chap-

ter 5). Only the objective lens of the confocal optics was not included in this evaluation
or in any calibration of the system. The working distance of the objective lens was not
sufficiently large to introduce the calibration samples between the lens and the dielec-
tric mirror used in the double-pass calibration. The lens that focused the light towards
the pinhole, and the lens that collected the light after the pinhole and focused it on the
detectors were always used.

During each calibration routine, the four calibration samples were measured 13 times,
and the averages of the first 10 non-calibrated matrices were used to compute the ma-
tricesW; and A?p (i=1..10), as described in section 4.2. The remaining three mea-
surements were then calibrated and averaged. Additionally, two other samples were
measured 5 times following each calibration: a linear polariser placed &t + 1°,

and a 532 nm zero-order quarter-wave-plate with its fast axis-atl0. These 5 mea-
surements were also calibrated using the corresponding pair of calibration matrices,
and then averaged. The Mueller matrices found from the 10 calibration routines were
averaged and are presented in Fig. 4.3. The standard deviation of each Mueller coeffi-
cient shows the variations in calibrating the system and computing the Mueller matrix
of a sample as a whole process; the numbers next to each bar are the standard deviation
of the 10 calibrations, which are also indicated by error bars.

The zero and close-to-zero coefficients in the theoretical Mueller matrices of some
samples impeded the use of percentage errors as meaningful evaluation parameters of
the repeatability of each individual coefficient. Instead, the root-mean-square of the
standard deviation of the 16 normalised Mueller matrix coefficients was calculated for
each sample, and the values were normalised using the transmittance for non-polarised
light (mm1) as maximum possible value. The results are shown in Table 4.2 together
with the maximum standard deviation observed in each sample.

The matrices shown in Fig. 4.3 were not normalized. They represent the absolute
Mueller matrices of the samples measured in double-pass. Since the theoretical Mueller
matrices of the samples were not known a priori, the evaluation of the accuracy of the
system was slightly more cumbersome. The theoretical matrices of the 6 measured
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Figure 4.3:Mueller matrices of 6 different sampleMM g’(’), MM g‘i, MM g‘;, MM g’;, a Linear po-

lariser at—46.7°, and a quarter-wave-plate a0. Bars show the mean values of 10 sets of 3 or 5
measurements, depending on the sample; each set was calibrated using a different pair of calibration
matrices\w; andAfjp (i=1..10)- Since the error bars appear very small in the page, the standard deviation

is indicated by the numbers below or above each bar.

samples were fitted using the transmittance for non-polarised light of the experimental
Mueller matrices; the polarisers and wave-plates were also fitted to the experimen-
tal azimuth angle. For the calibration samplésl 5, MM &%, andMM &, the mean

of the ten sets of corrected angles calculated during the calibrations were used; and
for the two additional samples, polariser and quarter-wave-plate, the mean of 10 az-
imuth angles was found using the polar decomposition published by Lu and Chipman
[60] on each of the ten averaged calibrated Mueller matrices. Two extra parameters
were used to fit the theoretical matrix of the calibration samﬂdag'z: the retardance

A3 = —1.54 and the diattenuation angis = 0.766, which were found within the
calibration routine.

The experimental and theoretical Mueller matrices of the 6 samples are shown in Table
4.1. A simplified summary of the repeatability and accuracy is presented in Table 4.2.
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Experimental

Theoretical (fitted)

do 1000 -0001 -0.002 Q002 100 0
MM g, —0.0007 1000 Q000 QOO1 0 1 0 0
=1 —0.001 Q000 1000 QOO1 001 0
0.0003 0000 —0.002 1000 00 0 1
MM P
B, 0426 Q423 —0.002 -0.007 0426 Q426 0 O
0422 Q422 -0.002 -0.007 0426 Q426 0 O
T — 0851 00010 —0.003 Q0021 Q0001 0 0 0 0
0_ 0 0001 Q003 Q0001 00024 0 0 0 o0
MM P
B, 0406 —0405 Q004 —0.003 0406 0406 Q001 O
—0405 0408 —0004 Q003 —0.406 0406 -0001 O
r—0811 0002 —0003 Q0018 —0.0004 0001 -0001 O O
0899 0003 Q002 Q0001 00025 0 0 0o o
d
MM B‘;
r—0983 0983 -0.005 -0.022 Q003 0983 -0020 -0032 0
- 0001 Q28 042 0780 0020 Q30 043 0831
6 =289 ~0.006 042 069 —0.483 ~0032 043 071 -0523
A;=—1.54 0004 —0779 Q490 Q02 0  -0831 0523 Q03
W3 =0.766
Polariser 0410 -0023 -0408 —0.006 0410 -0024 -0410 O
0019 Q0023 Q020 —0.0134 0024 Q0014 Q024 O
7 —0.820 —0405 Q023 Q411 —0.030 —0410 Q024 Q409 O
0— _467° 0004 —0.0004 —0.007 Q0079 0 0 0 o
Wave Plate 0983 Q004 -0003 —0.026 0983 0 0 0
0003 0982 -002 -001 0 0983 -002 O
T —0.983 0007 -001 -098 -002 0 -002 -098 0
0 _0.2° 0016 Q00 002 —0.978 0 0 0 0983

Table 4.1: The calibrated mean Mueller matrices in Fig 4.3 vs the fitted theoretical
matrices. The standard deviations of the experimental matrices are shown in Fig 4.3.
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

The rms of the 16 standard deviations for each Mueller matrix was calculated and
are shown next to the maximum value obtained in each sample in Table 4.2. The
coefficients that should have been equal to zero were also included, and the values
were normalised to the coefficient min The maximunrmsof o was equal to 5%

for the zero-order quarter wave-plate, and the maximum individualas equal to

3.5%.

Repeatability Accuracy
rmsof o | max.o | rmserror | max. error
MM g‘; 0.3% 0.6 % 0.1 % 0.2%
MM g‘i 0.5% 0.9% 0.8% 1.7%
MM g‘; 0.7% 0.9% 0.5% 0.8%
MM gg 1.0% 2.4 % 2.6 % 52%
Polariser 1.2% 2.1% 2.2% 7.2%

Wave Plate | 1.5% 3.5% 1.1% 2.7 %

Table 4.2: Normalisedms of the standard deviation of the 16 Mueller matrix coeffi-
cients (repeatability) andnserror with respect to the fitted theoretical values (accu-
racy) of the 6 samples measured. Values are shown as percentages of the magnitude of
coefficientmy1, and should not be confused with relative errors on individual Mueller
matrix coefficients.

The comparison of the experimental measurements with the theoretical fitted Mueller
matrices was done in a similar fashion. Tines of the errors in the coefficients were
calculated and are presented in Table 4.2 next to the maximum difference obtained for
each sample. The values were also normalised to the coefficiept amd are shown

as percentage in Table 4.2. The maximum observed error was equa%, &nd
occurred in the coefficient mgp of the polariser at-47°, but the maximunrmswas
measured on the calibration retarder, and was equal to 08¥.2The accuracy of the
measurements depends on the samples being manufactured and modeled appropriately,
however, the magnitude of the errors reported here is comparable to values previously
reported in the literature: .8% [73, 11], 4% [72], 5% [67], and 10% [68]. Some of
these tests were done using only two samples, but Mueller matrix polarimeters have
different sensitivities for different coefficients, and this reflects on the accuracy and
repeatability of the measurements. To the best of our knowledge, up to this date, there
is no standard to evaluate the performance of a system, and Table 4.2 shows that a
test with a small number of samples may lead to erroneous evaluation results. The
development of a complete set of samples that measures the sensitivity for different
coefficients appears to be necessary, and this is suggested as part of the future research
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

proposal at the end of this Thesis.

The calibration matrices of our system only contained the systematic errors introduced
by the optical components. Had all the components been itMéaind A% would

have been equal to the identity matrix and their condition numbers equal to one. The
experimental condition number of these two matrices give an estimate of the departure
of the instrument from the analytical model due to errors in the optical components, and
are shown in Table 4.3. The ellipsometric angles of the retarder used for calibration,
the corrected azimuth angles of the three calibration samples, and the consistency tests
for the transmittance of the samples are also shown.

| \ Mean | standard deviation |
condW) 1.10 0.01
cond A%P) 1.53 0.01
A3 -1.54 0.02
W 0.766 0.006
{61, 65, 63} {1°x10°3,89.9,28.9} | {5°x10°% 0.2°,0.1°}
Toap 1+ L2 /traceCP) 0.9945 0.0005
1
Toap: L1+ L2/ traceC3) 0.995 0.002
2
Toth [030r4|?/ (£102) 0.91 0.02

Table 4.3: Parameters calculated during the DP-ECM. Mean and standard deviation of
10 calibrations.

The condition number of the calibration matrices was significantly different to 1. This
was expected as it had been reported that the beamsplitters can introduce significant
errors in the polarimetry measurements [63, 108]. This is a clear example of how ad-
vantageous the ECM results when an accurate modeling of the system is not achievable
a priori. This advantage was particularly important when determining the retardance
A3 of the wave-plate used for calibration. The manufacturer (Comar) specifies the re-
tardance of the 158-GR-04 wave-plate as 2-4 ord2s5@+- 0.005 for 632.8 nm. The

value measured during calibration wags= —1.54+ 0.02 radians using 532 nm. This
value matches a third order retardance @60+ 0.0014 for 632.8 nm, which, despite

not agreeing with the nominal value within the measurement error, it matches the value
of 0.262+ 0.0024 for 632.8 nm that we measured with ttrensmissiorpolarimeter.

One final evaluation parameter for the calibration of the polarimeter was the ratio of the
smallest to the largest eigenvalue for the linear mapfiribat was solved to fintlV.

In practice, the smallest eigenvalue was not equal to zero, but if the next eigenvalue in
magnitude is much larger, then the of the null-space of the mapping is uniquely defined
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

[11]. The 16 mean eigenvalues of the 10 calibration routines are shown in Fig. 4.4.
Typically, the smallest eigenvalue was more than two orders of magnitude smaller than
the second-smallest eigenvalue.

K mapping eigenvalues

10| “““““ LIIPI PPN S B B P PR S PN B I A

Arbitrary units

DP-ECM mean of 10 calibrations \
123 456 7 8 910111213141516

Figure 4.4:Eigenvalues of the linear mappifig Mean and standard deviation of 10 calibrations

Using the results of a numerical simulation, Compeiral. [11] suggested that the

ratio of the smallest to the largest eigenvalue can be used as an estimator of the errors
on the calibration matrices. This analysis, however, was not performed during this
work, and has been left for future work.

Time stability of the polarimeter

The confocal scan measurements in this work (see chapter 5) were performed manu-
ally. The samples were moved using a micrometer screw which made everyn10
resolution axial scan of approximately 2 mm depth, a process that took nearly one
hour. The stability of the measurements with respect to time was tested taking 1331
measurements of each calibration sample every 5 seconds during a period of almost 2
hours (a gap of 5 additional seconds was left after every multiple of 11). The measure-
ments were taken using tth@nsmissiorpolarimeter, but the results are also valid for

the other two configurations. The 1331 non-calibrated measurements for each sample
were averaged and the calibration matrices were calculated. Then, each of the 1331
non-calibrated matrices were calibrated and the complete sets of Mueller matrices for
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4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)

the sample8 (air) andB3 (a zero-orded /4 wave-plate at 30 are shown in Fig. 4.5

and 4.6, respectively. The maximum standard deviation was found in the coefficient
mmmg4 of the sampld3y. The normalised value of the fluctuation of this coefficient with
respect to the value of coefficient mawas equal to B%. The rest of the fluctuations
were all smaller than 1%; for example, the maximum standard deviation for the sample
B3 was equal to @%.
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Figure 4.5:Mueller matrix of the sampl&, as a function of time, measured with tiransmission
polarimeter. Measurements were taken at intervals of 5 seconds apart through out a period of 2 hours.
The full range of the vertical scale is 0.07 in all graphs.

No temperature control was implemented on the Pockels cells, and this may be the
origin of the small time dependence of the Mueller matrix coefficients that can be ob-
served more clearly in Fig. 4.5. The laboratory room does not have a temperature
control system, nor air-conditioning either. The samples were measured in the follow-
ing order: Bg, By, By, andB3. Before the first measurement, approximately 1 hour
was needed to check that the system was working adequately, and during this time one
person was always inside the laboratory room with the door clpsetich could have

2Dark conditions were necessary.

76



4. Calibration: Double-pass eigenvalue calibration method (DP-ECM)
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Figure 4.6:Mueller matrix of the sampl&z (a zero-orde /4 wave-plate at 3) as a function of
time, measured with thigansmissiorpolarimeter. Measurements were taken at intervals of 5 seconds
apart through out a period of 2 hours. The full range of the vertical scale is 0.07 in all graphs.

risen the room temperatukeAfter the 1 hour check period, the measurements for the
sampleBg began, as soon as the person left the room. Once the measurements for each
calibration sample were finished (after approximately 2 hours), the person entered the
room and the next sample was introduced. Changing the samples did not take more
than 3 minutes, and the measurements were restarted immediately, once again, after
the person had left the laboratory room. If the temperature of the room was increased
when the person was inside the laboratory, this increase would have been larger at the
beginning, when the person stayed for longer inside the room and with the door closed
(i.e. right before the measurementdgfwere started). Perhaps, this is the reason why
the long term fluctuations were larger for the first samBlg, This is an effect that was

not investigated further, however, the errors induced in the Mueller matrix coefficients
were small.

3The temperature was not measured.
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5 Experimental setup II:
Confocal Mueller matrix

polarimeter

The confocal microscope used in this work was built in the reflection configuration
(epi-iluminated) [88]. In the paraxial approximation regime, this configuration is a
requirement to obtain polarisation-sensitive depth-resolved measurements. A trans-
mission confocal microscope can obtain depth resolved measurements, however, the
light passes through the whole length of the sample (along the optical axis) before
being detected. In a transmission confocal microscope, focusing the light at different
depths within the sample displaces axially tomeof light inside the sample, and may

also change its shape. For systems with low numerical apertures (N.A.) or for very
thin samples, however, the position and shape ottreof light may remain almost

the same within the sample. Therefore, the polarisation-sensitive measurements may
also remain the same even when focusing the light at different depths. In transmission
microscopes with high N.A. this might not apply. Teeneof light inside the sample

can enclose significantly different portions of the sample when focusing at different
depths, and polarisation signatures of the sample might also be retrieved from different
depths. The incorporation of a high numerical aperture transmission confocal micro-
scope with a Mueller matrix polarimeter will be suggested as a future investigation
topic at the end of this Thesis.

Two different reflection microscopes were built with the simplest possible confocal
optics. Given that it was the first time that these two techniques were combined, it was
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5. Experimental setup Il: Confocal Mueller matrix polarimeter

important to assess if there was any impact on each other, therefore, a simple optical
design was preferred. A reciprocal configuration of the confocal microscope, which
could have ensured a correct alignment of the pinhole [91], was not used because
it would have made more cumbersome to adjust the size of the pinhole (see section
5.2). The first version of the microscope used three doublets of different focal lengths,
and the second version consisted of three identical triplet lenses (Linos HALO 03
8903). A schematic diagram of the final confocal microscope is shown in Fig. 5.1.
The collimated light that propagated away from the PSG entered the beam&ditter

and was reflected towards the objective |@gl. This lens focused the light on the
sample, and the light that was reflected or scattered from the sample was collected
again by the tripleDbj1. The objective lens and the second triplebj2), formed an
image of the sampled point onto the confocal pinhole plane. The last tr(g3)(
collected the light passing through the pinhole and focused on the four detectors of
the PSA. The mirroM2 that appears in the figure was only used for alignment; when
measurements were taken, the mirror was blocked. This was also the branch used in
the two-branch calibration method (see subsection 4.2.2).

sample

Figure 5.1: Confocal microscope built with the Mueller matrix polarimeter. Refer to Fig. 3.1 for
position within the full system. MirroM2 was used for alignment only. Obj 1, 2 and 3, objective
lenses; Stop, system’s pupil; Ph, pinhole.

The original motivation for this Thesis was to acquirevivodepth-resolved complete-
polarisation-sensitive measurements of the human retina and therefore, the numerical
aperture of the system was very similar to the numerical aperture of a human eye: 0.19
for the microscope with doublets (25 mm focal length objective and 10 mm pupil), and
0.14 for the final microscope that used triplets (30 mm focal length objective and 8.5
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5. Experimental setup Il: Confocal Mueller matrix polarimeter

mm pupil). The effective N.A. of the eye is approximately equal to 0.16 (22 mm focal
length and 7 mm pupil [109]).

The microscope constructed with doublets showed a poor performance regarding the
polarimetry measurements due to polarisation inhomogeneities in the optics, as it will
be shown later. Nevertheless, the first axial scans of complete polarisation-sensitive
measurements were taken with this configuration and the description of the system is
presented in this chapter. The spot of light on the pinhole plane of the second version
of the system was diffraction limited and the calculated lateral resolution was better.
The accuracy of the polarisation measurements also improved. The axial resolution
limit of both systems and the first investigations of the effect of the confocal design on
the polarisation measurements are also presented in this chapter.

5.1 Confocal optics

5.1.1 Confocal polarimeter using doublet lenses

The objective lens@bj1) of the first polarimeterdoublets-polarimetgrwas a 25.4

mm focal length achromatic doublet (Newport PAC022), and the lens that focused
the light on the pinhole@bj2) was an achromatic doublet of 125 mm focal length
(Newport PAC055); the nominal transverse magnification between the sample and the
pinhole plane was 12%25.4 = 4.9. Using a Zemax model that included the lens Hata
provided by the manufacturer, this configuration produced a diffraction limited spot on
the sample plane with Strehl ratio equal to 0.83 and Airy radius equal forfh. AVhen

a flat mirror was put on the sample plane of the model, the Strehl ratio of the whole
system (a the pinhole plane), was 0.46. For a pupil diameter of 8.7 mm, instead of 10
mm, better Strehl ratios were found: 0.92 for the sample plane and 0.78 for the pinhole
plane, however, this was not implemented in the laboratory. The lateral experimental
resolution was not tested in this work, and only axial scans were performed with the
confocal microscope. The axial response of doeiblets-polarimetewas tested by
scanning a flat mirror through the focal region of the illumination spot. The axial
movement of the mirror was done by turning manually a micrometer screw which had
a minimum division of km. While scanning the mirror, the Mueller matrix at each
axial position was measured and calibrated; two different sizes for the confocal pinhole

1The models in Zemax included the curvature of the refracting surfaces, the spacing between them,
and the type of glass of each lens. The models were made for the same wavelength used in the experi-
ments: 532 nm.
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were used: 25m diameter (6 o.u. radius) and B0n diameter (12 o.u. radiud) The
coefficient mm4, which is equal to the intensity reflectivity for non-polarised light,
was used to calculate the axial resolution of the system, and is shown on Figure 5.2 for
both pinhole sizes.

o7k Mirror scan . % o 25umpinhole
' : : : : : © 50 um pinhole
0.6 : : : : : — Modeled with Zemax
05F
0.4}  FWHM
© 30.3um : : : : :
25 um : : : - - :
0.3F =M Casapm s L
50 pm © 46.6pm - :
0.2+ —456um ... |40
0. g
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Figure 5.2:Axial response of theloublets-polarimetefor two different pinhole diameters. Experi-
mental m; coefficient (circles) and Zemax results (green curves) are shown. The Zemax models were
normalized to the corresponding experimental maxima. Negative axial positions indicate that the mirror
was placed between the objective lens and its focal plane.

The green curves in Fig. 5.2 were calculated usingDHfaction Encircled Energy
function built-in Zemax-EE Version January 1, 2003. Different Zemax models were
made by increasing the distance between the objective @js)(and a planar mirror,

and then calculating the energy encircled by an aperture equal to the corresponding pin-
hole diameter. The Zemax model curves were normalized to the experimental maxima
because the objective lens was not used during the experimental polarimeter calibra-
tion. The Zemax models did not include coatings of the refracting surfaces, therefore,
the back reflections of the objective lens, that affected the mean valugipfvere

not included in the models. The plots in the figure were aligned using the centre of
the full-width-half-maximum (FWHM), which is the parameter commonly used as a
measure of the resolutioh According to Wilson [91], the asymmetry of the curves

Is typical of axial confocal measurements, often due to spherical aberration introduced
by defocus, and the agreement with Zemax models indicates that the microscope was
aligned correctly.

?[optical units (0.u.)] =2N.A [spatial units].
3The resolution of a systeincreaseswhen the minimum length that two objects can be separated
to be distinguishabldecrease$88].
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The rest of the calibrated Mueller matrix coefficients of the axial scan of the mirror are
shown in Fig. 5.3. This result constitutes the first combination of complete Mueller
matrix polarimetry and depth-resolved confocal imaging. The calibration of the mea-
surements did not include the objective ledisil, which was incorporated after the
double-pass calibration samples had been measured, and the measurements for both
pinhole sizes were calibrated using the sanieand A%. The calibration matrices

were calculated from measurements that included the two léisigsand Obj3, but

not the confocal pinhole either, to investigate the dependence of the Mueller coeffi-
cients on the pinhole size. Calibration measurements were also taken using the two
confocal pinholes, and the calibration matrices were computed. The results that used
the corresponding pinhole calibration matrices were very similar to the ones presented
in Fig. 5.3, but a more detailed analysis on how the pinhole size affects the measure-
ments is presented in section 5.2. The objective lens was not included in the calibration
measurements because the working distance of the lens was not sufficiently long to put
the calibration samples between the objective and the mir(see Fig. 3.13a), and

also from recalling the original motivation of this project; farvivo imaging of the
human retina, the cornea plays the role of the objective lens, and it clearly cannot
be used in the calibration routine. An additional step in the calibration routine will be
required in the future, even when the measurements are taken with a microscope objec-
tive, especially when the application requires higher numerical apertures, i.e. shorter
working distances of the lenses. This part was not covered in this work and is included
in the proposal for future work in chapter 7.

The Mueller matrix of the axially scanned mirror was different form the identity ma-
trix, which represents a mirror in the chosen double-pass coordinate system in this
work (see section 4.2). Two different types of departure from the ideal identity ma-
trix can be observed on the Mueller coefficients in Fig. 5.3: one that looks like an
even function with respect to the highest sign@.g. coefficienMirror,4); and one

that looks like an odd function (e.g. coefficieviirrorsp). The only lens that was not
included in the calibration was the objective lens, and this contributed to the departure
of the Mueller matrix from the identity, as it will be shown later. The introduction of
the objective lens also focused the light on the mirror, and this could have generated
a significant axial component of the electric vector [84, 85], and we still do not know
how much this modified our measurements. The numerical aperture used in this work
was small compared to studies on the polarisation changes produced by high aper-

4Note that the asymmetry of the function is the same as in the coeffidient,;. If the coefficients
are normalised to unit-transmittance the graph looks like a constant function.
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Figure 5.3:Axial Mueller matrix response of th@oublets-polarimetewith 25 and 50um diameter
confocal pinholes.

ture lenses [110, 82, 84, 85], and as a first approximation, the axial component was
neglected in this work; nevertheless, the compromise between the accuracy of the po-
larimetry measurements and the spatial resolution of the microscope will be suggested
as future research at the end of this work.

We began the investigation of the non-vanishing values of the off-diagonal coefficients
using thedoublets-polarimeteto take measurements of different samples with dif-
ferent pupil sizes (10, 8, 6, 4, and 2 mm). At the same time of processing the data,
we realised that the three doublets used in the polarimeter showed strain induced po-
larisation artefacts when viewed through crossed polarisers, possibly strain induced
birefringence. The origin of this polarisation artefacts falls beyond the scope of this
work, but Fig. 5.4 shows three representative photographs of this effect @bjBe

The effect was very similar on the three lenses, and it was strongest at the points of
contact between the mechanical mount and the lens. Figure 5.4 (a) shows the lens illu-
minated with polarised light and with no analyser in front of the camera.The pictures
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on Fig. 5.4 (b) and (c) show the lens between linear polarisers almost crossed and
crossed, respectively.

(@) (b) (©

Figure 5.4: Strain induced polarisation artefacts on an achromatic doublet (Newport PAC040). a)
llluminated with polarised light; b) between polarisers almost crossed; c) between crossed polarisers.
This lens was used as tkbj3 in thedoublets-polarimeterThe diameter of the lens was 25.4 mm.

These polarisation artefacts may introduce errors that the calibration method cannot
remove because only the average effect across the area used on the lens was measured.
In the presence of spherical aberration, for instance, the light that can pass through
the confocal pinhole may be focused using a different radial portion of the lens, for
different axial positions of the pinhole; this means that a spatially resolved calibration
(imaging polarimetry) may be necessary, and this will be suggested as future research
at the end of this Thesis. It should be noted, however, that despite the rather localised
polarisation artefacts at the edge of the 25.4 diameter lens shown in Fig. 5.4, the central
part of the pupil appears more or less uniform. In the experiments, pupil sizes no larger
than 10 mm were used with tlt®ublets-polarimeterA Babinet-Soleil compensator
could have been used to counterbalance these effects if they were due to homogeneous
retardance across the lens aperture, however, this was not implemented in this Thesis.
The mean results of measuring 10 times the Mueller matrix of the objective lens using
different pupils, without pinhole, are presented on Fig. 5.5. A pair of calibration matri-
ces was calculated for each pupil size and no pinhole was used. Despite knowing that
the data was affected by the strain induced polarisation artefacts, the Mueller matrices
were characterized using polar decomposition [60] to estimate the order of magnitude
of the variation as a function of pupil size. As a reference, the retardance values for
each pupil size, calculated using the polar decomposition, are presented in Table 5.1.
Statistically significant differences were found in the Mueller matrices of the objective
lens when measured using different pupil sizes, but the polarisation inhomogeneity of
the doublet lenses degraded the reliability of the measurements. Instead of developing
a spatially resolved calibration method, the confocal optics were replaced, and a new
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Figure 5.5:Doublet objective lens (Newport PAC022) measured in double-pass when focused on the
surface of a dielectric mirror. The measurements were calibrated using a set of calibration matrices
calculated with the corresponding pupil size. No pinhole was used for these measurements.

microscope was built.

5.1.2 Confocal polarimeter using triplet lenses

The second version of the confocal polarimeter was built with two 30 mm focal length
triplet lenses (Linosigh-aperture-laser-objectivddALO 03 8903) instead of the two
doublets, and the len©pj3) that collected the light behind the pinhole and focused it

on the 4 detectors was also a triplet of the same kind. When viewed between crossed
polarisers, no strain induced polarisation artefacts were noticed in the lenses, but this
was not recorded with a camera in this work. The spot of light produced on the sample
plane of a Zemax model was diffraction limited for the 8.5 mm aperture used in the
experiments, with a Strehl ratio of 0.97. The Airy radius of the model wag2120n

the pinhole plane, the Strehl ratio was 0.83. According to the Zemax models, the lateral
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5. Experimental setup Il: Confocal Mueller matrix polarimeter

Retardance | Lin. Ret. Angle
mean| o mean | ©

2mm | 0.496| 0.002| —37.0° | 0.1°
4mm | 0.504| 0.005| -36.9° | 0.3°
6mm | 0.511| 0.005| —354° | 0.2°
8mm | 0.491| 0.005| —-37.2° | 0.2°
10 mm| 0.457| 0.005| —39.2° | 0.3°

Table 5.1: Total retardance (linear and circular), in radians, and angle of linear re-
tardance of the objective lens (Newport PAC022) measured in double-pass with the
doublets-polarimeteusing five different pupil sizes.

resolution was better in th@oublets-polarimetethan in thetriplets-polarimeter An

axial scan of a flat mirror was also performed to test the axial response of the system.
Figure 5.6 shows the results of 3 scans using a@@iameter pinhole (17 o.u. radius),

and 2 scans using a pinhole ofign diameter (4 o.u. radius). The FWHM values
shown are the average of the 2 and 3 experimental runs for the 5 amchZfinhole

sizes, respectively.

1 T T T r
Mirror scan -
08' FWHM
o osumpn-1 s+ 20
o 05umph-2 : )
0.6f © 20umph-1 - R 20um jiéim
© 20 umph-2 .
3

© 20 pm ph -

-200-150-100 -50 0O 50 100 150 200
Axial position in pm

Figure 5.6:Axial response of thériplets-polarimeter when moving a flat mirror through the sample
focal region, for two different pinhole diameters: 5 andi2®. Experimental ny coefficient (circles)

and Zemax results (green curves) are shown with the corresponding FWHM values. Negative axial
positions indicate that the mirror was placed between the objective lens and its focal plane.

The complete Mueller matrices of these mirror axial scans are shown in Figs. 5.7 and
5.8, for the 5 and 2@m pinholes, respectively. The system was calibrated without
pinhole for the data in Figs. 5.7(a) and 5.8(a); and Figs. 5.7(b) and 5.8(b) contain the
data of the scans when the system was calibrated with the corresponding pinhole in the
exact same position as when the scans were made.
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Figure 5.7:Axial Mueller matrix response of thigiplets-polarimetemwith a 5um confocal pinhole.

87



Experimental setup Il: Confocal Mueller matrix polarimeter

20 pm ph - 1 o 0 0
09 Fan N T or] R o4t o4t
o R e LLLLEE error12 03| error13 03| error14
o7t Mirror, ¢ 1 0.2) 02| 0.2
0.6} 1 i 0.1 0.1 0.1
05 i v
0.4 kS 04 0.1 0.1
03 b \ -02] 0.2 02|
0.2 0.3 0.3 -0.3]
0. J__// 0.4 0.4 0.4
o 0. 0. 0.
-200-150-100-50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
il positon i "l positon in i i postion i il postion
0. 1 o 0.
o4t 09| o4t o4t
03| error21 0] H 0.3 error23 03 error24
02 o7l Mirror, + 02 02
0.1 0.6| 22 ¥ 0.1] 0.1
O | 0.5| i W—_
-0 04 01 04
-0.2 0.3 ¥ 0.2 -0
-0.3) 0.2 -0.3] -0.3|
04 o 1/ 04 04
-0.54 of -0.5! -0.
-200-150-100-50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
cal positon i "l positon in i postion i ol postion
0. 0. 0.
o4t oaf o4t
03 error31 03] error32 03 error34
0.2} 0.2] 0.2}
0.1 0.1 0.1
I R BN, S A tereee]
04 01 04
-0.2) -0.2| -0.2)
-0.3] -0.3] -0.3]
0.4 0.4 0.4
-0.5k -0.5! -0.
-200-150-100-50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
il positon i haal positon i im i postion i ol postion
0. 0. 0.
o4t o4f o4f 09 4
03| error41 03| error42 03| error43 0| .
02 02) 02 o7p Mirror, &,
0.1 0.1} 0.1 0.6] 44 )
o NGRS [ BN .. O R ; |
-0.1 -0.1] -0.1] 0.4 !
-0.2| 02| -0.2] 03] ’ 5
0.3 03 03 02| P N\
0.4 0.4 0.4 0. 1__/ \
-0.5k

(&) The system was calibrated first without the confocal pinhole used for the

~200-150-100-50 0 50 100 150 200
Aial positon i um

scan.

5!
~200-150-100-50 0 50 100 150 200

‘Axial posiion in um

200-150-100-50 0 50 100 150 200
‘Axial posiion in um

200-150-100-50 0 50 100 150 200
‘Axial positon in um

1] O 0 o
09 AN | ol ol o4t o4t
08 roL e og Mirror oa Mirror, ost Mirror,
o7 Mirror_ ¢ 02 02 02
0.6 1 i Ky 0.1 0.1] 0.1
0.5 i L8
04 \ 0.1 0.1 0.1
03 £ 3 0.2 0.2 0.2
0.2 7 -0.3) -0.3] -0.3|
0. 1_/ 0.4 0.4 0.4
-0. -0. -0.5!
-200-150-100-50 0 50 100 150 200 -200-150-100-50 0 50 100 150 200 -200-150-100-50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
‘i postion ‘il positon i ‘il positon in ‘il postion i
0. 0. 0.5
oaf 09 ™ oaf oaf
oz Mirror,,, 03 P oa Mirror,, os Mirror,, ,
02 o7 Mirror, b 02 02
04 [ 22,4 i 01 04
09 i 1
-0.4f 04 S 0.1 0.1 W___
02| 03 ; 5 02| 0.2]
-0.3) 0.2 0.3 -0.3]
-0.4f o 1__/{ 0.4 0.4
° -200-150-100-50 0 50 100 150 200 -200-150-100-50 0 50 100 150 200 N -200-150-100-50 0 50 100 150 200 0 -200-150-100 -50 0 50 100 150 200
il postion ‘il positon i ‘il positon in i postion i
0. 0. 1 0.
0.4 B 0.4 . 0.9| )’m 0.4 .
o3 Mirror. o3 Mirror X o3t Mirror.
02 st 02 %2 o7t Mirror . * 02| 34
0.1 0.1 0.6| 33 ¢ t 0.1]
e 0.5 1 O, R ————
0.1 0.4 04 Y 0]
-0.2| 02| 03| ! N 02
-0.3] -0.3] 0.2 e -0.3]
-0. -0. -0.
-200-150-100-50 0 50 100 150 200 -200-150-100-50 0 50 100 150 200 -200-150-100-50 0 50 100 150 200 -200-150-100 -50 0 50 100 150 200
il postion ‘il positon i ‘il positon in i postion i
0. 0. 0.
0.4 . 0.4 . 0.4 . 0.9
ozt Mirror, ozt Mirror, oat Mirror, 03 Fo
02 0.2 02) o7t Mirror, ¢ 5
m o A 1Y) AT e, o€ 4 1
0] 0.5 ¥
0.1 0.1 0.4 0.4 ¢ v
-02] <02 0.2 03 ¢ %
-03 -03 03] 02| 3
0.4 0.4} 0.4 0. 1__/’
-0.5t -0.5k
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Figure 5.8:Axial Mueller matrix response of thigiplets-polarimetemwith a 2Qum confocal pinhole.
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5. Experimental setup Il: Confocal Mueller matrix polarimeter

Similarly to thedoublets-polarimeterthe objective len®©bj1 was removed from the
system during the calibration routine. This might have contributed to the non-zero
values in the off-diagonal Mueller matrix coefficients of the mirror, which were not
present when the lens and the pinhole were not used (see Fig. 4.5). These coefficients,
however, were smaller than with tkleublets-polarimete(see Fig. 5.3); for example,

the coefficient Mirrog4 was 5 times smaller with thigiplets-polarimeter

The shape of the axial function of some coefficients in the first20pinhole scan

(pink circles in Fig. 5.8(b)) is noticeably different to the other two scans made with
the same pinhole (blue and red circles). This first axial scan and its calibration mea-
surements were taken prior to the realignment of the confocal pinhole of the system.
While every effort was always made to place the pinhole at the point of best focus,
the precision of the axial position of the 20n pinhole was of the order af25 um,
because of the large pinhole size, and this might have been the cause of the marked
difference in the coefficient§lirroras 34 and 430f the first scan. When the system was
calibrated using the confocal pinhole, these differences were smaller (see Fig. 5.8(b)),
but remained visible. The calibration of the system with the confocal pinhole can im-
prove the accuracy of the measurements, but we believe it can also introduce a new
source of errors: the optical aberrations of the calibration samples can change the size,
shape, and position of the spot focused on the pinhole plane; therefore, in the presence
of spatial polarisation inhomogeneities in the system, the average state of polarisation
of the light that can pass through the pinhole may depend on the position and size of
the confocal pinhole.

The total retardance, linear retardance, and azimuth angle of the linear retardance at
three axial positions of the mirror scans were calculated using Lu’s polar decomposi-
tion [60]. The three positions were the maximum and the two edges of the FWHM
of the coefficientMirror11. The three parameters were calculated from matrices that
were calibrated with and without the corresponding confocal pinhole. These results
are presented in Fig 5.9, where it is noticeable that the effect of fh@ pinhole on

the measurements was larger than when thgrdOvas introduced.

Higdonet al. reported that the extinction ratio in a confocal polarisation microstope
depended on the size of the pinhole and the numerical aperture [112]; they showed
experimentally that for smaller pinhole radii or numerical apertures, the extinction
coefficient obtained was higher. Higdenhal. also compared the extinction coefficient

SPrior to this work, a confocal polarisation microscope has been understood as a polarisation sensi-
tive device in its simplest form: a confocal microscope with a linear polariser inserted into the illumina-
tion beam, and a linear analyser into the detection path [111, 82, 112, 86].
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Figure 5.9:a) Total retardance, b) linear retardance, and c) azimuth angle of the linear retardance
of three Mueller matrices in the axial scan: The maximum and the two edges of the FWHM on the
coefficientMirror11. The values were calculated using Lu’'s polar decomposition [60], on the data that

appears in Figs. 5.7 and 5.8.

of their crossed-polariser system with and without a Babinet-Soleil compensator that
could cancel the birefringence in the optical elements of the microscope. They reported
a tenfold improvement when the compensator was used. The addition of a variable
retarder to the optics of our confocal Mueller matrix polarimeter may compensate for
the birefringence of the objective lens that was not included in the calibration routine,
nevertheless, if this is not the only effect of the lens on the polarisation, or if the
linear retardance it introduces is not homogeneous across the aperture on the lens, the
correction may not be sufficient. Additionally, the errors introduced by the optical
aberrations of the calibration samples will remain. The solution to this calibration
problem was not investigated in full in this work, and despite the small retardance
measured from the objective lens used here (see Fig. 5.9), this effect may be more
significant for higher numerical apertures. In this work, some preliminary studies of
this effect were performed, and they are presented in the following section.

5.2 First experiments on the effect of the size of the

confocal pinhole on the Mueller matrices

5.2.1 Polarimeter in reflection

According to previous research on confocal microscopes that used linear polarisers
the size of the detector (pinhole), as mentioned above, has an influence on the ex-
tinction ratio of a microscope that uses crossed linear polarisers. The first question
that arose after the combination of the Mueller matrix polarimeter with the confocal

microscope was how the pinhole affected the polarimetry measurements. In this sec-
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5. Experimental setup Il: Confocal Mueller matrix polarimeter

tion, preliminary experimental results of the effect of the confocal pinhole on Mueller
matrix measurements are presented.

The four calibration samplesf®, BY°, BY, andBS"), a polariser at 45 and a quarter
wave-plate at Owere measured using confocal pinholes of 5 different sizes: 50, 30, 20,
10, and 5um (42, 25, 17, 8, and 4 o.u. radii respectively), and also without confocal
pinhole. The term 'confocal’ has been kept in this last statement because the pinholes
were placed at the plane which was a conjugate of the spot of light that was focused
on the sample when an objective lens was used in the microscope. For this part of the
study, however, no objective lens was used in order to assess the isolated the effect of
the pinhole size on the polarimetry measurements. For each of the 6 configurations
(pinhole sizes), a pair of calibration matric&¥ @ndA) were computed, and the sam-

ples were calibrated in two ways: using the matrices obtained with the same pinhole
that was used to measure the sample, and using only the matrices obtained from the
no-pinhole configuration. The two sets of calibrated Mueller matrices are shown in
Figs. 5.10 and 5.11.

The calibration samples were measured 13 times; the first ten measurements were used
to calibrate the system, and the last three were calibrated as an ordinary sample. The
other two samples were measured 5 times and then calibrated. All the measurements
were taken during the same day, using one configuration at a time, in the following
order: no-pinhole, 50, 30, 20, 10, andi/n pinhole. Despite not having randomized

the order in which the different pinholes were used, 10 measurements of the sample
BoP were taken every time the pinhole was changed, to monitor the system stability.
These 4 measurements are also shown in Figs. 5.10 and 5.11, as the 4 red dots between
the bars of the sampl&itr” (light blue).

Both figures, 5.10 and 5.11, show significant differences on the Mueller matrices of
some samples when measured with the different pinhole sizes, which were larger than
the experimental fluctuations indicated by the mimmnitormeasurements (red dots).

The mp1 coefficient of the polariser at 44magenta), for instance, decreased (the
magnitude increased) with the pinhole size. The retarder used for calibration (dark
blue) and the quarter wave-plate at@ray) exhibited a similar behaviour, but the other
three samples, air and the two linear polarisers used for calibration, did not change
significantly when different pinholes were used. The exact source of these differences
was not identified, nevertheless, two important observations were made during the
experiment that can help to point towards a more complete investigation. The first
one is that, during the calibration routine, after each pinhole had been aligned when
no sample was in the system, the position of the focused spot on the pinhole plane
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Figure 5.10:Mueller matrices comparison using no pinhole and 5 different pinhole sizes. The four
calibration samples, a polariser at°4&nd quarter-wave-plate at @vere measured without pinhole

and with pinholes of diameter 50, 30, 20, 10, andr8, in that order. For each sample, the 6 bars are
ordered in the same way. The calibration matrices of the no-pinhole configuration were used to calibrate
all measurements.

changed when a sample was introduced, possibly due to the calibration sample not
having parallel front and back surfaces. The pinhole was realigned laterally to let
the maximum amount of light to go through, and this re-positioning might not have
been the same for all pinholes, the axial position of the pinhole was not modified.
The lateral re-positioning was never larger than half the diameter of the pinhole. The
second is that the retarder used for calibration seemed to have introduced the larger
amount of optical aberration. This was noticed from the interference pattern between
the light used for the measurement and the light reflected off the nvt2oin Fig.

5.1, The interference fringes looked like a saddle function, typical of astigmatism.
In the presence of aberrations, the lateral and axial position of the pinhole may have
probed different locations across the pupil. Hence, if any optical element introduced

6This mirror was always blocked while taking measurements, but it was used to cross-check the
alignment of the system.
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Figure 5.11:Mueller matrices comparison using no-pinhole and 5 different pinhole sizes. The four
calibration samples, a polariser at4td quarter-wave-plate at &ere measured without pinhole and
with pinholes of diameter 50, 30, 20, 10, angit®. For each pinhole size a different pair of calibration
matrices was used: calibration with the same pinhole size.

polarisation inhomogeneities across the pupil, the polarimetry measurements could
have been different for different pinhole sizes or different pinhole positions.

A difference worth mentioning between the matrices calibrated without pinhole and
with the corresponding pinhole, appeared in thg ooefficients ofB3% and the po-
lariser at 48. Figure 5.12 shows an enlargement of thg graphics in Figs. 5.10 and
5.11. When all the measurements were calibrated with the no-pinhole matrices (a),
these coefficient changed as a function of the pinhole size for the s@giflédark

blue, "Ret 29.0"). When the calibration was made usingthand A9 calculated for

each pinhole size, the fluctuation was similar to the fluctuation of the nmmooritor
measurements. For the polariser at,46e opposite occurred; the values ofywere

more alike when the matrices were calibrated with the no-pintlendA%P. In the

same pair of graphs, the values shown for the sixth sample, the quarter wave-plate, are
very similar for both types of calibration.
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Figure 5.12: Mueller matrices coefficients calibrated without pinhole and with the corresponding
pinhole: a) Extracted from Fig. 5.10 and b) extracted from Fig. 5.11.

The calibration routines for the different pinhole sizes resulted in different character-
izations of the calibration samples. It is suggested here that optical aberrations and
polarisation inhomogeneities of the optical elements may have been the cause of these
variations, and it was shown that there is a need of further research in this direction.
The calibration parameters calculated for each pinhole configuration are shown in Ta-
ble 5.2; these can be compared to the Table 4.3 presented in the evaluation of the
calibration in section 4.3.

| | NOph|50um [ 30um | 20um [ 10um | 5um |

cond W) 111 | 1.08 | 1.10 [ 1.11 | 1.14 | 1.09
cond A%P) 153 | 155 | 1.58 | 1.56 | 1.60 | 1.56
eig(K)ie/eig(K)1s | 0.09 | 0.07 | 0.08 | 0.13 | 0.17 | 0.14
A3 (rad) -1.56 | -1.56 | -1.57 | -1.54 | -1.56 | -1.56
W3 073 | 0.72 | 0.71 | 0.66 | 0.63 | 0.65

01 0° 0° o° 0° 0° 0°
6, 90.7 | 89.8 | 90.2 | 88.7 | 88.5 | 88.9
03 28.7 | 28.3 | 285 | 27.8 | 27.7 | 28.3

Table 5.2: Parameters calculated during the DP-ECM using different pinhole sizes.
See Table 4.3 for an estimation of the standard deviation.

Two of the calibration parameters deserve special attention. The first is the calculated
diattenuation angl&’; of the retarder used for calibration, which showed a large de-
pendence on the pinhole size. For smaller pinholes, the diattenuation increaséd (i.e.
departed fromrz/4). The second parameter is the ratio of the two smallest eigenval-
ues of the linear mapping, which became larger as the pinhole size was decreased,;

94



5. Experimental setup Il: Confocal Mueller matrix polarimeter

this means that the accuracy of the calibration became slightly poorer because the null
space ofK was not as uniquely defined as for larger pinholes or no pinhole. It should
be stressed here that these are preliminary results and that more experimental runs will
be necessary to arrive to definite conclusions.

Axial scan of the confocal pinhole

As was mentioned before, the objective ledbjl) was not used during the calibration

of the polarimeter, hence, any polarisation changes introduced by the lens were not
removed from the Mueller matrix axial scans presented previously. In those axial
scans, any polarisation changes introduced by the size of the confocal pinhole were
combined with the non-calibrated artefacts of the lens. To isolate the pinhole effects,
experiments were made moving the pinhole along the axis around the confocal region,
instead of the mirror. Figure 5.13 shows a schematic diagram of the configuration
of the system when scanning the pinhole without the objective@jis A scan of

the 5um confocal pinhole was also made with the objective l&igk) inserted and
focusing the light on the surface of the miridirror shown in Fig. 5.13.

Sto
P Pinhole

Mirror
Figure 5.13:Schematic diagram of the system used to make the axial scans of the pinhole.

The pinhole lateral position was estimated from the radial symmetry of the irradiance
pattern on a screen behind it. Due to the low N.A. of the system this positioning
was considered sufficiently accurate; the irradiance pattern was inspected by eye while
performing the axial scans and the radial symmetry appeared to be the same for all
axial positions. The results of the two pinhole axial scans are presented in Fig. 5.14,
with and without the objective lens. Both sets of Mueller matrices were calibrated
using measurements that were taken without the confocal pinhole inserted.

The results obtained with and without the objective lens were similar to those previ-
ously obtained when scanning the mirror. The FWHM of the scans werepitth.1
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Figure 5.14: Mueller matrix axial scan of the im confocal pinhole with (green triangles) and
without (purple circles) the objective lebjl.

without Obj1, and 87.0um with the objective lens. The value of 87un is approx-
imately equal to 2 times the FWHM of the previously presented mirror scans: 43.8
um (see section 5.1.2). The off-diagonal Mueller coefficients of these scans showed
similar shapes to those obtained when scanning the mirror. The Mueller matrices at
the intensity peak and at the edges of the FWHM were compared to the ideal identity
matrix, and the residuaimserrors obtained are shown in Table 5.3.

| [ -FWHM/2 | Peak| + FWHM/2 |

Without Obj1 4.8% 2.1% 2.9%
With Obj1 5.3% 3.6% 3.8%

Table 5.3: Residuaimserrors of the axial scans of the pinhole in the reflection con-
figuration with and without the objective lens focusing the light on the surface of the
mirror.

The data in Table 5.3 is evidence that the pinhole can alter the Mueller matrix measure-
ments. Themsvalues and the consistent shape of the off-diagonal Mueller coefficients
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indicate that the pinhole effect may also be systematic. This graph also shows that the
effect of the objective lens was small, almost only reduced to the broadening of the ax-
lal PSF. A thorough study of the pinhole and lens effects will require a rigorous analysis
of the system combining polarisation ray tracing [113, 114] and the measurement of
the polarisation aberrations [115, 116] introduced by the optical elements, however,
this falls beyond the scope of this Thesis. In this study, the polarisation changes ob-
served on the off-diagonal elements of the pinhole scans were smaller than 5 and 8 %,
for the measurements without the lens and with the lens, respectively. These values
were calculated with respect to the maximum value obtained: in both cases, coefficient
Phss (see Fig. 5.14).

The results presented here indicate that the removal of the objectivedliein$ quring

the calibration measurements was not the only origin of the polarisation artefacts ob-
served during the axial scans of the mirror. Additionally, the magnitude of this effect
was comparable to the magnitude of the polarisation changes introduced by the optical
sectioning of the confocal pinhole. Therefore, the calibration of the system without the
objective lens was a good compromise between accuracy and simplicity of the system.

5.2.2 Polarimeter in transmission

Another axial scan of the Bm pinhole was made, this time with the polarimeter built

in transmission; see Fig. 3.13(c) for a schematic diagram. The collimated beam leaving
the PSG was focused by the ledbj2 on the pinhole plane and then collected by the
Obj3. The PSA was exactly the same as in the reflection configuration. Moving the
pinhole, axially through the focal region of tl@hj2, was equivalent to moving the
pinhole in the reflection configuration of the polarimeter, but the beamspligtal) (

and the mirror Kirror) were no longer included in the optics; the rest of the system
was identical to the one described in subsection 5.2.1. Instead of the 633 nm third-
order quarter wave-plate, a 532 nm zero-order quarter wave-plate (Newport 10RP34-
532) was used as calibration sample. The accuracy and repeatability of the system
was tested using 6 calibration routines, and the results were better than those obtained
in the double-pass configuration (see Table 4.3): (accunanggrror= 2.0% and

max. error= 3.7%; (repeatabilityyms o = 0.7% and maxoc = 1.3%. The absence of

the beamsplittergs1) may have been the cause of the improvement of the performance
of the system; Pezzaniti and Chipman have reported that beamsplitters can introduce
polarisation inhomogeneities [63].
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Quarter wave-plate at different azimuth orientations

The performance of thigansmissiorpolarimeter was also tested by measuring a zero-
order quarter wave-plate of the same specifications than the one used for its calibration
(Newport 10RP34-532). The wave-plate was oriented at everyebveen 0 and

355; the order of the orientation angles was not randomized and the measurements
were taken without a pinhole in the system. The Mueller matrices are shown in Fig.
5.15, and the total retardance and the angle of the linear retardance computed from the
Mueller matrices are shown in Fig. 5.16.
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Figure 5.15:Mueller matrices of a zero-order quarter wave-plate at different azimuth orientations,
measured with théransmissiorpolarimeter. The red circles are the average of two sets of measure-
ments, and the green curves represent the Mueller matrices of an ideal quarter wave-plate.

The differences between the ideal quarter wave-plate Mueller matrix elements and the
experimentally measured values were smaller th@%&f the measured transmittance
(0.988+0.003). The measured average retardance of all the different orientations was
0.249 +0.0064; this value matched the wave-plate’s specification23D) within

the manufacturer’s nominal tolerance@.0031).
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Experimental values: zero-order quarter wave-plate
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Figure 5.16Total retardance and azimuth angle of linear retardance calculated from the experimental
Mueller matrices in Fig. 5.15, using Lu’s polar decomposition [60]. The error bars of the angle of linear
retardance are smaller than the marker size.

Axial scan of the pinhole

The axially resolved Mueller matrices of the pinhole scan are presented in Fig. 5.17.
When comparing the measurements to the identity matrix, the residsalror at the
intensity peak of the scan wamsserror= 2.4%, only Q4% larger than without the
pinhole. At the edges of the FWHM, however, the residos was: 44% at one, and
3.7% at the other. The FWHM was equal to 7&8 and the peak intensity was 87%

of the intensity measured without the pinhole.

The polarimeter in transmission was simpler than the system in reflection configura-
tion. The axial response of the confocal optics showed that the off-diagonal Mueller
coefficients were comparable to those obtained in the reflection configuration. The
calibration of thetransmissiorpolarimeter did not require the removal of any optical
element either, and the scan presented in Fig. 5.17 confirms that the pinhole sectioning
was responsible for the Mueller matrix artefacts that were also shown in the mirror
scans: Figs. 5.7 and 5.8. The normalised Mueller matrix at the axial position of max-
imum intensity is shown in Eq. 5.1, and the parameters calculated using Lu’s polar
decomposition are presented in Table 5.4.
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Figure 5.17 Mueller matrix axial scan of the #m confocal pinhole using thieansmissiorpolarime-
ter. Data was calibrated from measurements that did not include a pinhole.

1 0.0086 Q003 Q0022 0.6
0.0086 10091 —-0.004 Q0491 0.2
PhScamax =
0.028 Q0152 10367 —0.003 13
0.0083 —0.0341 0052 1 0.7

In the transmission and reflection configurations of the polarimeter, the effect of the
confocal pinhole was statistically significant in the light of the accuracy and repeata-
bility of the measurements. However, the residumas error between the measured
Mueller matrix at the intensity peak and the idealized identity matrix was comparable
to the maximunrms error that was obtained during the accuracy tests. For a reliable
experimental investigation of the precise origin of the axial polarisation "artefacts" pre-
sented in this section, the accuracy of the polarimeter needs to be improved, neverthe-
less, this work has shown that the pinhole size has an observable effect on the Mueller
matrix measurements. And this should not be overlooked when taking polarisation-

06 16 01
03 12 05 5
x 1077,
04 04 20
04 28 02
(5.2)
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] \ mean \ c \
| Transmittance | 0.8703 \ 0.0005 \
Diattenuation 0.009 0.001
Diatt. vector [8.6,27,22] x103% | [0.6,1.9,0.1] x1073
Retardance 8.1x 1032 0.3x 1032
Ret. vector [53,82, 19 x10 % | [03,0.3,0.1] x10 ¢
Linear ret. azimuth —61° 1°
Polarisance 3.0x10°7? 0.2x 10772
Pol. vector [0.9,2.8,0.8] x10 2 |[0.02,0.2,0.1] x10?

Table 5.4: Lu’s Mueller matrix polar decomposition of the peak position of the axial
scan in Fig. 5.17.

sensitive measurements using confocal or fibre coupled imaging systems, because it
can affect the accuracy of the results. Microscopes with higher numerical apertures
or with larger aberrations may show a larger dependence on the pinhole size, but this
remains to be investigated further. The numerical aperture used in this Thesis (N.A. =
0.14) was small because it was meant to match the numerical aperture of the human
eye, and the polarisation "artefacts" measured here did not degrade the polarimetry
measurements much more than the measured experimental errors. In the next chapter,
the first measurements of complete depth-resolved polarisation-sensitive imaging will
be presented, accompanied by a quantitative analysis.
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6 Depth-resolved
polarisation sensitive

measurements

After the mirror axial scans, the following depth-resolved complete polarisation sen-
sitive measurements were taken from an artificially built sample. The sample was
measured using th@oubletsand thetriplets polarimeters, and, despite having shown

that the performance of trdoubletsconfocal polarimeter was poor (see section 5.1.1),
both results are presented in this chapter for comparison. The analysis, however, was
only made for the results obtained with ttr@lets-polarimeter Section 6.1 intro-

duces a first time achievement: the set of axially resolved complete Mueller matrices
of a sample. In sections 6.2 and 6.3, the results obtained wittnifiets-polarimeter

are used as an example to describe the basic characteristics of the forward and inverse
problems, respectively.

6.1 Experimental results

A stack of three linear 560 nm quarter wave-plates, made of cellulose acetate butyrate
(Edmund Scientific N53-205), was placed between two microscope glass slides as is
shown in Fig. 6.1. The two outer retarders of the stack were oriented at approximately
0°, and the middle retarder at 45This orientation was not extremely accurate, but
this should not be of concern for the results presented here. The shape of the two outer
retarders was a parallelogram with the longer sides cut along their fast axis, both from
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6. Depth-resolved polarisation sensitive measurements

the same acetate sheet; and the inner retarder was cut at approximd&lyith

respect to the fast axis. The long sides of the three retarders were then aligned against
a flat surface before being mounted between the glass plates. The elements of the stack
were not cemented; they were kept together by pressing the two glass slides against
each other. No mechanical mount was used to fine-tune the azimuth alignment of the
retarders, but once placed on the holder, the angle did not change. The exact azimuth
angles were calculated from the experimental Mueller matrices as will be explained
later in this section.

A, oes® 0 oSt ax N oS S
o) & @ cont® A o
C NI S ¢ ast N
- 0 NI @"®
€GeS o

(b)

Figure 6.1:The stack of retarders between two microscope glass slides that was measured with the
confocal Mueller matrix polarimeter. The axial position was changed using the micrometer screw that
appears in the picture (a).

The calibration measurements were taken with the confocal pinhole inserted in the sys-
tem and without the objective lebjl. It was mentioned in the previous chapter, that

the removal of the objectivebj1, during the calibration of thé&iplets-polarimeter
introduced an error no larger than 3%, in the off-diagonal Mueller matrix coefficients

of the axial scan of the confocal pinhole. For the purpose of this study, this systematic
error was considered small, therefore, it was not removed from all the measurements
presented in this chapter. At the end of this Thesis, suggestions on how to overcome
this source of error are mentioned.

The stack of retarders was moved along the optical axis, using a manual micrometer
screw (Linos 061162) that had a smallest scale division giiOmounted as it appears

in Fig. 6.1(a). The sample was being moved towards the objective Gd)s) (while
measurements were taken everyulbd The calibrated measurements are presented

in Fig. 6.2, where the peaks in the graph of coefficiet$tack,;, labeledA, B, C,

D, E, andF, correspond to the position of the interfaces between the elements of the
stack (see also Fig. 6.1(b)). Three measurements were taken at each axial position and
then averaged; the standard deviation of the three measurements at each position was
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6. Depth-resolved polarisation sensitive measurements

always smaller than the marker size in the plots.
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Figure 6.2: Axial scan of the stack of retarders using aubn confocal pinhole in theriplets-
polarimeter

The intensity peaks on Fig. 6.2 correspond to the following interfageshe front
surface of the front glass platB; the back surface of the front glass plate and front
surface of the 1st retardet;, the back surface of the 1st retarder and front surface of
the 2nd retarderD, the back surface of the 2nd retarder and front surface of the 3rd
retarderg, the back surface of the 3rd retarder and front surface of the back glass plate;
F, the back surface of the back glass plate. Given the transparency of the sample, the
signal from the axial positions between the interfaces was negligible for experimental
purposes; hence, the attention was focused only on the measurements taken from the 6
interfaces.

The Mueller coefficientetStack;; represents the reflectance of the sample for non-
polarised light. The height of the peaks on this graph, however, may have also been
affected by the tilt of the 6 different surfaces of the sample, which may not have been
the same for all of them. Manufacturing defects or air gaps between the components of
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6. Depth-resolved polarisation sensitive measurements

the stack could have been the cause of this tilt. Additionally, interference between mul-
tiple reflections from the different surfaces may also have had an effect on the measure-
ments: e.g. the width of pedakand the two small peaks (axial positions 1.40 and 1.59
mm) between th& andF maxima. See the enlarged graph of coefficiertack;; in

Fig. 6.3. As a first approximation, aberrations introduced by focusing the light through
interfaces of different refractive indices were not taken into account [117]. The axial
positions of the 6 main reflectance peaks and the corresponding FWHM values are
presented in Table 6.1.
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Figure 6.3:Enlargement of the graph of coefficiertStack;; in Fig. 6.2.

| Interface | Peak axial position (mm) FWHM (um) |

A 0.00 41.7
B 0.59 44.3
Cc 0.80 51.5
D 1.00 455
E 121 65.3
F 1.80 441

Table 6.1: Axial position of the peak and FWHM value at the interfaces of the retarder
stack, as measured with the confocal Mueller matrix polarimeter

The axial Mueller matrix of the same sample was also measured witticihielets-
polarimeter and the results are shown in Fig. 6.4. The relative magnitudes between the
peaks of coefficierdtack;;, measured from the different interfaces, are not the same as

in the scan presented abovelets-polarimete). Nevertheless, the 6 peaks are clearly
distinguishable, and also, the two glass plates appear thicker than the three retarders.
The two small peaks between theandF maxima are present in this scan as well, and
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6. Depth-resolved polarisation sensitive measurements

the overall thickness of the sample: 1.81 mm (the axial distance be#waedrF), was

only ten microns larger than with theplets version of the system. Several features
are common to both scans. The ratio of the Mueller coefficients of the inteeaed

B was approximately the same for the 16 different pairs on the measurements obtained
with the two systems. This means that, disregarding the difference in transmittance of
the two Mueller matrices (interfacésandB), the rest of the polarimetry information

was approximately the same for the two interfaces. On the contrary, if the Mueller
matrices of the interface® andC, for example, are compared, it is visibly clear that

the polarimetry information was not equal. That is, the contrast between some of
the other Mueller coefficients of the two interfaces is not comparable to the contrast
between the transmittance coefficient of the same two surfaces. See for example the
values at interfaceB andC of coefficientsetStackss andstackss in Figs. 6.2 and 6.4,
respectively.
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Figure 6.4: Axial scan of the stack of retarders using a st confocal pinhole in theloublets-
polarimetet

The Mueller matrices of the scan obtained with teublets-polarimetewere not
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6. Depth-resolved polarisation sensitive measurements

analysed further; the lenses introduced polarisation artefacts that affected the measure-
ments (see section 5.1.1). Attention was focused only on the results tiglets-
polarimeter and they are presented in the following section. In this Thesis, they are
used as an example to introduce the forward simulation problem, by comparing them
with analytically built matrices.

6.2 Forward simulation

The experimental results used in this section were obtained withphets-polarimeter

they were the Mueller matrices, presented in Fig. 6.2, that corresponded to the inter-
facesA, B, C, D, E, andF. In an attempt to eliminate calibration artefacts derived from
errors in the axial position of the pinhole, the stack Mueller matrices of the 3 axial
positions with highest signal were used to represent each interface. For example, the
Mueller matrices of positions 0.58, 0.59, and 0.60 mm were used to represent the in-
terfaceB. Except for the interfacg, the middle axial position corresponded always to

the local maximum signal of the measurement of the interface. The three matrices of
each interface were first normalised to unit reflectance for non-polarised light (coeffi-
cientretStack;1), and then averaged. The root-mean-square values of the 16 standard
deviations of each surface were only slightly larger than those obtained in the repeata-
bility tests (section 4.3)A, 1.5%; B, 1.5%; C, 5.4%;D, 2.5%; E, 3.6%;F, 1.9%. The

final, normalised, matrices are shown in Table 6.2, together with the simulated ma-
trices at each interface and thas error of the difference between the experimental
matrices and the simulated ones. The measured reflectance, the peak at each interface,
(7) is also included in Table 6.2. This normalisation removed the information that
could have been obtained with a conventional confocal microscope from the rest of
the polarisation information, hence, it emphasised the relevance of the technique when
measuring samples where simple reflectance (or transmittance) contrast between the
different layers may not be sufficient to distinguish one from each other.

The simulated Mueller matrices were only fitted to the azimuth orientations of the
three linear retarders within the stack. The azimuth angles were found numerically
by minimising therms of the difference between the experimental and the simulated
matrices; the figure in thems column of Table 6.2 is the value of the minimums

for each interface.

The first two simulated interfaces @ndB) were assumed to be equal to the identity
matrix, in agreement with the choice of coordinate system for the representation of the
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| Interfaces |  Exp. Mueller matrices |  Simulated (fitted) | rms |
A 1 001 002 -001 100 0
003 103 -001 -007 01 00 o
. 001 005 104 —004 0010 3.4%
7=3.4% 000 006 -004 100 000 1
B 1 001 -007 -001 100 0
003 103 002 -0.10 0100 0
. 009 001 105 Q00 00 10 4.8%
7=3.6% 001 008 -004 103 00 0 1
C 1 —014 001 006 1 0 0 0
010 093 -029 -017 0 094 -034 -003 11.6%
7—0.9% —003 -030 —071 —0.34 0 -034 -093 -0.16 g
0= _5.0° 007 016 034 -0.82 0 003 016 -099
D 1 000 -009 001 1 0 0 0
T=4.4% 001 -096 017 -0.30 0 -094 020 -028 3.6%
6, = —5.0° 009 017 100 003 0 020 098 003 :
0, — 43.9° 002 027 000 -0.96 0 028 -003 -096
E
v=11% 001 100 a0l 007 o 09 001 00
B 0. ) 0
b1 = 5'00 005 004 098 —0.20 0 001 099 -0.16 3.3%
6, =439 003 -008 009 092 0 -010 016 098
03 =-53°
F
= 16% ot 0'81 78'86 7(?601 cl) 039 08 000
e 05 105 —001 4 . 1 01 o
by = 5'00 —011 006 105 —0.15 0 001 099 -0.16 5.1%
6, =439 002 -006 008 103 0 -010 016 098
03 =-53°

Table 6.2: The calibrated Mueller matrices of the interfaces in Fig 4.3 vs the fitted
analytical matrices. See section 4.3 for an estimate of the standard deviation of the
experimental matrices.

double-pass measurements (see section 4.2). The incidence of the light on the glass
plate interfaces was approximately perpendicular, and no phase shift was expected
from the reflection on the dielectric surfaces. Thes of the difference between the
identity matrix and the normalised experimental matrices aehdB were 34% and

4.8%, respectively.
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The simulated Mueller matrices of the rest of the interfaceb, E, andF, were cal-
culated using a retardance of 560 fm= 140 nm for each pass through the plastic
retardetWp. The simulated double-pass Mueller matrix of interf@eas a function
of the azimuth angle of the front retardék ), was

C9(6,) = Mirror -Rot(—6;) -Wp - Rot(61) - Mirror - Rot(61)-Wp - Rot(—64).
(6.1)

The mirror matrix that appears on the left of the equation ensured that the azimuth of
the double-pass matrix was measured in the coordinate system of the first pass, and
the mirror matrix in the middle part of the equation separated the firs-pass from the
second-pass. It was assumed in Eg. 6.1 that the behaviour of the retarder was the same
in the forward and the backward propagation. The sign of the azimuth orientation of
the second pass was the opposite to the sign of the angle of the first pass. The azimuth
angle of the simulated sample was found numerically as the angle that minimized the
rmsfunction

rmsc(61) = rms(CER,— C™P(61)), 6.2)

which was calculated using the 16 Mueller matrix coefficients. A graph of (@3 is
shown in Fig. 6.5(a), where the angle= —5.0° is indicated by a vertical line. Note
that this is the same value that appears in Table 6.2.

Once 6, was found, the same procedure was used to calc@late 43.9° using the
azimuth of the experimental Mueller matrix of interfalbe keeping6, constant and
using

DY(6,) =Mirror -C~

(6.3)
-Rot(—6,) -Wp - Rot(8,) - Mirror -Rot(6,)-Wp -Rot(—6,)-C™.

And subsequently minimising thhenserror between the simulated and the experimen-

tal matrix. In Eq. 6.3,CT andC~ are the simulated matrices of the first and the
second pass through the first retarder in the stack. The letter stresses the relation of
this retarder with the measurements from interface C.

Finally, 63 was found using the experimental Mueller matrix of the interface E, keeping

6, and6, fixed, and using an equation similar to Eq. 6.3. Figures 6.5 (b) and (c), below,
contain the graphs of the residuaisfunctions for the matrices at the interfac2and

109



6. Depth-resolved polarisation sensitive measurements

E, respectively.
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Figure 6.5: Root-mean-square of the difference between the experimental Mueller matrices of the
interfacesC, D, andE, and the corresponding simulated matrices, as a function of the orientétion (
6>, and63) used in the simulations.

No account of the axial component of the electric vector, introduced by the focusing
of the light, was made in this forward simulation, and the retarders were assumed
to introduce the exact retardance specified by the manufacturer. This simple model
showed a good agreement with the experimental results, as can be seen from Table 6.2.
For systems with larger numerical apertures, however, the effect of the axial component
may need to be taken into account.

In addition to thermsvalues shown in Table 6.2, Lu’s polar decomposition [60] was
performed on all the experimental and simulated matrices; the calculated retardance
and angle of linear retardance (azimuth) are presented in Fig. 6.6. The shaded area in
Fig. 6.6(b) is a reminder that the simulated angle of linear retardance of inteXaces
andB was undefined; since both interfaces were ideally represented by the identity ma-
trix, the retardance was equal to zero. However, the retardance vector was normalised
to unity before calculating the angle of linear retardance, and the experimental results
for A andB in Fig. 6.6(b) were also included. Only the retardance value of the inter-
face C was statistically different than the simulated value. It is worth to note that the
signal recorded from this interface was the smallest of the 6 interfaces.

The angle of linear retardance was calculated using the first two components of the
retardance vector of each Mueller matrix [54]. The three component of the normalised
retardance vectors of the 6 interfaces are shown in Fig. 6.7. The contrast between the
interfaces depends on the polarisation parameter used to compare them. The contrast
between interface§ andD does not appear significant in the retardance graphic; the
contrast on angle of linear retardance, on the contrary, not only can show that the
sample had a polarisation signature betwe&emdD, but it is a quantitative parameter

to distinguish between the two interfaces. Furthermore, if onlySheomponent of
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Figure 6.6:(a) Total retardance and (b) angle of linear retardance of the experimental (green triangles)
and simulated (blue squares) Mueller matrices of the interfaces.

the retardance vector is used to compare them, the contrast is even higher (see Fig.
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Figure 6.7: Normalised retardance vector components of the Mueller matrix of the interfaces on
the Stokes representation @) (horizontal and vertical), (b§ (45° and—45°), (¢) S3 (right and left
circular).

The depolarisation power at the interfaces was also calculated, and the values were
small; the largest value obtained wa®®+ 0.03 for the interfac®. The only scatter-

ing sample measured in this Thesis was a preliminary test on a piece of white paper for
which the depolarisation power wa$@3+ 0.003. The measurements taken from the
stack of retarders were specular reflections from the interfaces and no depolarisation
was expected, which agreed with the results obtained.

As a first approximation, the forward simulation presented here agreed well with the
experimental results. This work shows for the first time that it is possible to obtain con-
focal depth-resolved complete-polarisation-sensitive measurements. More work needs
to be done towards the extension of the technique to systems with higher numerical
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apertures, and the effect of the confocal system on the polarimetry lateral resolution
remains to be studied. This will also be mentioned in the last chapter of this The-
sis. The results presented here show that it is possible to obtain a Mueller matrix
of a sample at different depths using a confocal polarimeter. Contrary to results that
have been reported using polarisation-sensitive OCT systems [50], where the mea-
surement of Mueller matrices and Stokes vectors at different depths has been reported
[45, 46, 10, 47], in this work, the 16 elements of the Mueller matrix were really mea-
sured independently. This means that the measurements presented here were not Jones
matrices converted to Mueller matrices; they were complete Mueller matrices which
can include the depolarisation information. This constitutes a first time achievement
and is the central part of this Thesis.

6.3 Description of the inverse problem

Equation 6.3 is an example that contains the main properties of any depth-resolved
Mueller matrix measurement. This equation represents the effect on polarisation that
the stack of retarders introduced when a beam of light passed through the first glass-
plate, then the first retarder (&t), then the second retarder (@&t), and then was
reflected at interfac®, before propagating back, through the same elements, in the
opposite directioh

The Mueller matrix obtained from interface D contained the information of the cumu-
lative double-pass effect of the first and second retarders of the stack. Previous to the
acquisition of the Mueller matrix from interface D, the Mueller matrix from interface

C was measured, and in this first measurement, only the effect of the first retarder
was contained, also in double-pass. The solution of the inverse problem, for this case,
should consist on identifying what are the 4 Mueller matrices that represent the ef-
fect of each of the 4 passes of light through the two retarders in the forward and the
backward propagation: the first and the second pass. In the most rigorous sense, the
solution of this problem is under-determined; there are 4 unknown matrices and only
2 are known. And if arN number of layers is measured, the solution would require
2N matrices. Clearly, some assumptions will need to be made when interpreting the
double-pass data.

Until the date of writing this Thesis, this inverse problem had not been addressed in

1in the forward analysis, it was assumed that the glass plates did not introduce changes in the state
of polarisation.
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the literature. Some studies, however, have analysed the propagation of completely
polarised light through layered birefringent media [118] and layered birefringent turbid
media [119]. The N-matrices, which refer to the effect, on the polarisation of light,
of an infinitesimal path length within an optical element, were introduced in 1948
by R. Clark Jones [120], in the light of the Jones calculus: for completely polarised
light. And Jones’s work was extended by Azzam in 1978 [121]. Azzam developed a
differential 4x 4 matrix calculus to describe the continuous propagation of partially
polarised light through linear anisotropic media that may exhibit depolarisation. If
the depth resolved Mueller matrix measurements were made sufficiently close to each
other, Azzam’s work could be a good starting point to deal with this inverse problem.
Despite not having covered that in this Thesis, some general observations concerning
double-pass measurements are presented in the following paragraphs which may be of
help for future investigations.

Forward and backward propagation

The propagation through an optical element or a sample should not be assumed, in gen-
eral, to be the same in the first than in the second pass. If the depth resolution of the
system used to obtain the Mueller matrices of a sample is not sufficiently high, layers
with different polarisation properties may be measured as a single layer. Mueller ma-
trices are not commutative and, evidently, the combination of two layers that introduce
different effect on polarisation may not be the same when the order of the matrices (the
layers in this case) is interchanged.

Ideal polariser

If the front layer of a sample was an ideal linear polariser, much of the information
about the polarisation properties of the posterior (deeper) layers would be lost when
using a reflection configuration. Light returning from the sample would always be lin-
early polarised, and the polarisation effect of the posterior layers would be projected
as a mere intensity fluctuation of the returning linearly polarised light, i.e. as an effect
on the first component of the Stokes vector. Nevertheless, a polarisation sensitive de-
vice would still be advantageous over a conventional imaging system (intensity and/or
phase) in this case, because the front layer would be identified as a polariser, and any
intensity fluctuations would not necessarily be associated with reflectivity fluctuations.
Moreover, encountering an ideal linear polariser in biological samples would perhaps
constitute a more important scientific achievement than the study of what remained

113



6. Depth-resolved polarisation sensitive measurements

deeper in the sample.

Circular retarder

An ideal circular retarder that is not a Faraday rotator [53] would appear as a homoge-
neous medium if measured alone in double-pass. The effect of such a rotator should be
the same in the forward than in the backward propagation, but for light that propagates
in double-pass, the effect of the circular retarder in the second-pass would cancel the
rotation of the first-pass, due to the change of the co-ordinate system that the reflection
between the first and the second pass produces. During the measurement of a deeper
layer, however, the role of the rotator would have an effect on the polarimetry mea-
surement, because in this case the two optical rotations would not be separated only
by a reflection, and the effect of the deeper layer may not necessarily commute with
either rotations.

Depolarisation produced by scattering

In a reflection confocal microscope, the light that returns to the system from a layer
within a scattering sample (e.g. some type biological tissue) and is detected, can be
depolarised by the scattering process itself. But when a deeper layer is measured it
will be blocked (or almost blocked) by the confocal aperture, although some light will
still be scattered at the front layer. Hence, the depolarisation produced by scattering
that will be measured from the deeper layer will be independent (or almost indepen-
dent) of the depolarisation measured from the front layer. That is, the depolarisation
produced by scattering will not have a linear cumulative effect throughout the depth of
the sample.

The scenarios presented above are ideas of some of the difficulties that future investi-
gations may encounter while attempting to solve this inverse problem, or while estab-
lishing the circumstances under which a solution might exist. It may be important to
note that even if such a solution does not exist in the practical sense, some polarisation
parameters may still provide valuable information about the measured sample. If the
depolarisation produced by scattering is indeed independent at the different depths, for
example, one additional imaging dimension will be gained with this technique that no
other existing three-dimensional imaging technique has yet reported. Additionally, the
elaboration of statistical models (e.g. using principal component analysis) of combi-
nations of the depth resolved polarisation properties of a sample, may lead to a better
understanding of its nature and to the possible identification of anomalies, perhaps like
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diseases of biological samples
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7 Conclusions

For the first time, a combination of a depth resolved imaging technique with a complete
Mueller matrix polarimeter was introduced. A confocal microscope within a complete
Mueller matrix polarimeter was designed and built. The system was used to measure
the complete Mueller matrices at different depths of a non-biological sample: a stack
of glass plates and retarders. This work has shown that it is possible to measure the
complete Mueller matrix of a sample at different axial positions, and therefore, in the
three spatial dimensions.

This chapter is divided in two parts. First, a summary of the tasks accomplished during
this work is presented. At the end, topics derived from this work, that remained without
investigation, will be described as a proposal for future research.

7.1 Summary and conclusions

7.1.1 The Mueller matrix polarimeter

The Mueller matrix polarimeter built in this work used two Pockels cells as linear
variable retarders in the PSG, and a division-of-amplitude-polarimeter as PSA. This
combination did not involve any moving parts in the system, and the speed of the
measurements was only limited by the light detection time. In the experimental system
the analogue to digital card was the speed limiting factor. The acquisition time for
a complete Mueller matrix was 51.2 milliseconds. This speed was around 20 times
faster than for some polarimeters that have been reported [67, 72, 65, 73], and can
still be increased if a faster analogue to digital card is added, provided photon noise
is not a limitation. The original choice of the card was made based on low cost and
ease of implementation only, and for the purpose of this study, the acquisition rate
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obtained was adequate. In some future applications of the system, the short acquisition
time could significantly degrade the signal-to-noise ratio of the measured signals. This
might be a serious issue for ophthalmic applications, for instance, due to the corneal
maximum permissible exposure to light [92] and the low reflectance of the retina [122].
Nevertheless, the device has to be fast to minimise errors introduced by the unavoidable
motion of the eye. Furthermore, the device has been designed to avoid any waste of
photons. As aresult, even though it is still early to state that the polarimeter will exhibit
an adequate SNR for ophthalmology applications, its design is one of the best possible
to this end.

The condition numbers of the PSG and PSA wef2and 3.61, respectively. These
numbers reflected how linearly independent were the states of polarisation generated
with the PSG, and the states of polarisation detected with the PSA. However, they
did not reflect the sensitivity of the system to random experimental errors, that were
reduced by taking a large number of redundant measurements. Also, these condition
numbers did not include information of the compatibility of the PSA and the PSG. With
the particular ramp retardance modulation implemented on the Pockels cells, the full
Mueller matrix of any sample was contained in 24 Fourier series coefficients (6 for each
detector of the PSA). According to the mathematical model, the rest of the harmonic
coefficients were zero. This means that no information was discarded by truncating
the Fourier series of the intensity signals, which may have favored the performance of
the system by decreasing its sensitivity to random errors. A more realistic evaluation
of the Mueller matrix polarimeter was presented, that implicitly took into account the
combination of the PSG and PSA. The condition number of the m@ttixat related

the 6 non-zero Fourier coefficients to the Stokes vector used to illuminate the sample
was equal to/2. The two parameters introduced by Sabatkal. [12], for the PSG

built here, were RAIg = 2, and EW\4 = 6 (see section 3.3.1). These two later values
were slightly larger than those calculated for the optimal tetrahedron configuration that
uses 4 measurements [77]. The condition numb&),adn the other hand, was better
than for the tetrahedron matrix. The individual figures of merit should not be used
as the only parameter to compare the design of different Stokes or Mueller matrix
polarimeters, however, they are extremely valuable in the optimisation process of a
particular system.

The double-pass eigenvalue calibration method (DP-ECM) was developed, as a modi-
fication of the original ECM previously published by Compatral. [11]. Its accuracy

and repeatability were evaluated for the polarimeter built. firhe of the standard
deviation of the Mueller matrix coefficients was smaller thas4, and the residual
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rms error between the experimental and the analytical Mueller matrices of 6 different
samples was smaller than626. A variant of the DP-ECM was also described, that
allows the calibration of the double-pass polarimeter to be made on a different optical
branch than the one used to measure a sample; it was called two-branch DP-ECM.
The time stability of the system was tested on four samples over a period of two hours
for each of them, and the typical standard deviation found on a single Mueller matrix
coefficient was smaller than 1%.

7.1.2 The confocal microscope

Two versions of the confocal system were built: one that used non-ring-mounted dou-
blet lenses and one that used ring-mounted triplets. Using the radius of curvature, re-
fractive index, and separation between surfaces of the optical elements, a Zemax model
was made for each version of the system. Two different pinhole sizes were used in each
case. The experimental Mueller matrix axial response of each configuration was mea-
sured scanning a mirror, axially around the focal region of the objectivedbjis The

results agreed with the corresponding Zemax model. The axial FWH#bwoblets-
polarimeterwas 30.3um with the 25um pinhole. For the triplets-polarimeter, the
FWHM was 43.8um when a 5um pinhole was used.

7.1.3 The confocal Mueller matrix polarimeter
Polarisation artefacts of lenses

A complete Mueller matrix was measured, with the confocal system, at different ax-
lal positions of a dielectric mirror. The objective lens was not included in the cal-
ibration. The Mueller matrices obtained with thdeublets-polarimeteshowed an
unexpected retardance of approximately 0.5 radians that was not measured with the
triplets-polarimetet. It was found that when looking at the doublet lenses between two
crossed linear polarisers, extinction of the light could not be observed, specially at the
points of contact between the mechanical mount and the edges of the lens. The exact
origin of this effect was not identified but when the screw that maintained a lens fixed
to the mechanical mount was tightened slightly more, a larger transmission through
the crossed polarisers was observed, i.e. the artefact was larger. For this reason, it was
hypothesised that the effect was a manifestation of strain induced birefringence. This

1The namesloublets-polarimeteandtriplets-polarimeterare used here only as identifiers, and the
results should not be considered as a general distinction between doublet and triplet lenses.
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artefact was larger at regions closer to the tightening screws, however, under visual
inspection it appeared rather homogeneous across the the pupil area used in the exper-
iment; this might explain why the residual birefringence measured was similar when
different confocal pinhole sizes were used. The lenses of the system were changed
and thetriplets-polarimeterwas built. The triplets lenses had been glued into ring-
mounts by the manufacturer. When looking at the triplets between crossed polarisers,
the extinction was the same than when looking only at the two crossed polarisers.

Pinhole of the confocal Mueller matrix polarimeter

Experiments were made to assess the effect of the confocal pinhole in the polarimetry
measurements. Six different samples were measured, in double-pass, using 5 different
pinhole sizes and also without a pinhole. In general, the Mueller matrices of the sam-
ples were statistically different for the different pinhole sizes, and this indicated that
the confocal pinhole can affect the polarimetry measurements. It was suggested that
this effect may be even larger in the presence of aberrations and polarisation inhomo-
geneities in the optical elements.

The effect of the pinhole was also investigated performing axial scans of the pinhole
instead of the dielectric mirror. The axial response of the confocal system was mim-
icked without the objective lenGbj1, to separate the effect of the pinhole from the
lens artefacts, which could not be removed in the calibration. The Mueller matrices
at the intensity peak and the edges of the FWHM were compared to the ideal identity
matrix, and the residuaimserrors obtained were. 2% at the peak,.8% at one edge,

and 29% at the other edge. Thensvalue at the peak was inside the accuracy range

of the polarimeter, but not the values at the edges of the FWHM. This constituted ev-
idence that the confocal pinhole had an effect on the polarimetry measurements. The
axial scan of the pinhole was also made with the objective lens in the system, focusing
the light on the surface of a dielectric mirror. The residunaserrors obtained with the

lens were: 3% at the peak,.8% at one edge, and@® at the other edge. Therefore,

it was estimated that the error introduced in the system by removing the objective lens
during the calibration was of the order ab%o.

A further study of the effect of the pinhole was made using a polarimeter in trans-
mission. The system was built and the accuracy and repeatability of this system was
tested. The repeatability obtained wass ¢ = 0.7%, and the accuracy measured was
rmserror = 20%. The performance of this system was better than the reflection po-
larimeter, possibly because the beamspliist was removed. A Bm pinhole was
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axially scanned around the focal region of the objective lens, thus mimicking the ax-
ial response of the confocal microscope. The residuslerror between the Mueller
matrix at the intensity peak and the identity matrix wa4%2, and at the edges of the
FWHM was 44% and 37%. The results confirmed that the pinhole introduced an
error in the polarimetry measurements. As in the case of the reflection configuration,
the effect of the pinhole was significant at the edges of the FWHM, but not at the axial
position of the intensity peak.

7.1.4 Depth-resolved Mueller matrix experimental results

The Mueller matrices at different depths of a stack of retarders were measured. This
Is the first time that the complete polarisation effect of a sample has been measured at
different axial positions. A forward simulation of the experimental measurements of
the 6 surfaces of stack was made. The nominal retardance of the three acetate retarders
was used, and their azimuth orientation was fitted to compensate for the errors in the
experimental alignment. The maximum residuak error between the simulated and

the experimental Mueller matrices was.@%; however, this value was obtained only
from one interface, and the rest of the residumas errors were not larger thanB.

Lu’s Mueller matrix polar decomposition [60] was used to calculate the retardance, re-
tardance vector, and depolarisation power of the simulated and experimental matrices.
The depolarisation power was very small for all surfaces, due to the specular nature
of the measurements. The retardance and angle of linear retardance agreed within the
precision error in almost all cases. For the interfadbe retardance of the simulated

and the experimental matrices were slightly different. This was the interface with the
smallest signal and the largashs error was found. Given that the thickness of the
three retarders was the same, multiple reflections might have been coupled into the
measurements of interfacsandE, but this was not included in the analysis. The
results indicate that if such interference existed it did not have a large effect on the
polarimetry measurements.

Lastly, some features of the inverse problem that remains to be solved were described.
In some cases, it might not be valid to assume that the forward and backward propa-
gation of light through a slice of a sample are the same. If an ideal polariser is part of
the sample, the polarisation information of the layers behind the polariser will reduce
to an intensity fluctuation. Pure circular retardance is not detectable in double-pass
measurements, but if a circular retarder is in front of some other polarisation element,
the circular retarder will have an effect on the measurement of the deeper layer. Depo-
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larisation produced by scattering can be measured at different depths, but, in general,
it will be an independent process at each layer.

7.2 Proposal for future research

The solution of the inverse problem

The study of the disentanglement of the Mueller matrices measured in double-pass
at different depths is an important step to follow. The advantages and limitations of
the technique need to be established, as to what sort of information can actually be ex-
tracted from the double-pass measurements. Attention should also be paid to scattering
samples.

Depth-resolved complete Mueller matrix imaging of the human eye in-vivo

As was mentioned in the introduction, the original motivation for this work is still

an interesting topic for research. Depth-resolved Mueller matrix retinal images might
provide medical researchers with new information of the structure an/or pathology of
the eye. The adaptation of the system built in this work seems like the obvious con-
tinuation of the project. Faster digital-to-analogue and analogue-to-digital electronics
and beam scanners will be needed, to reduce the artefacts introduced by the ocular
movements. Adaptive optics will be required to correct the aberrations of the eye and,
hence, obtain a significant depth resolution in the retina. The PSA of the system may
need to be modified. The high speed of the DOAP could compromise the signal to
noise ratio due to the small energy flux that can return to the system from the retina.

Confocal Mueller matrix polarimetry with high numerical apertures

In confocal microscopy, axial resolution can be achieved using reflection or transmis-
sion configurations. In confocal Mueller matrix polarimetry this might not always be
the case. If the N.A. of a transmission microscope is sufficiently low, the polarisation
properties that can be measured from a thick specimen will appear practically constant
for all the different depths. However, if the N.A. of the system is increased, signif-
icantly different portions of the specimen may be probed by the light when chang-
ing the axial position of the focus. Hence, polarisation signatures of the sample may
be identifiable at different depths. This could lead to the design of a depth-resolved
polarisation-sensitive confocal microscope in a transmission configuration. Particular
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attention should be paid to the effect of the axial component of the electric field [84].

Evaluation of the performance of a polarimeter

The condition number of a polarimeter is the parameter most widely used to evaluate
its performance [97]. As stated by Sabaskel. [12], the condition number does not
provide information on the reduction of the sensitivity to random errors that can be
obtained by taking redundant measurements that over-determine a Mueller matrix, or
a Stokes vector. It was shown here that the condition number of the PSG was smaller
(i.e. better) if only the matrix that relates the 6 detected Fourier coefficients to the time
varying Stokes vector is considered, instead of the 256 states of polarisation that were
generated. The condition number is a valuable tool in the fine tuning optimisation of a
particular polarimeter design, however, a different evaluation parameter should be used
if a general assessment of the performance of the system is desired. The two parameters
introduced by Sabatket al. are affected by the number of redundant measurements
taken, nevertheless, none of these three parameters are sensitive to how compatible are
the PSA and the PSG of a Mueller matrix polarimeter.

It is suggested here, that the evaluation of a system is made experimentally. Using the
principle of the ECM and an appropriate set of samples. It was mentioned, in chapter
4, that the accuracy of a system can be different on different samples. Therefore,
the estimated performance of a polarimeter might not be achieved when measuring a
sample for which the accuracy is worse by inherent properties of the system. A set of
samples that can estimate the accuracy of the system on each of the Mueller matrix
coefficients will be a very useful tool to evaluate a polarimeter. Additionally, such a
set of samples may also be used during the design of the polarimeter, in the light of the
ECM and the methods for optimised design of polarimeters developed by De Martino
et al. [97].
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