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“It’s still magic even if you know how it’s done.”

Terry Pratchett



Abstract

High contrast adaptive optics correction of image degradation caused by imaging through

the atmosphere of the Earth from the ground enables direct imaging of faint companions.

Differential astrometry and photometry of faint companions is an important task in

this branch of astronomy. However; the direct imaging of faint companions in high

contrast adaptive optics corrected images is limited by instrumentally induced quasi-

static speckles present in the PSF of the parent star of the faint companion.

In this thesis statistical decision theory is applied to the problem of detecting, locating

and estimating the differential intensity of a faint companion in the presence of quasi-

static speckle noise. The Hotelling observer, which is the optimal linear observer, is

rigorously derived form the ideal observer to carry out this task.

This study is broken into two parts: the first is comparing the performance of the

Hotelling observer, through using simulated and real adaptive optics corrected data, to

other widely used algorithms for computing differential astrometry and photometry of

faint companions, the second part addresses the difficulty in distinguishing the signal

of a faint companion from that of a quasi-static speckle by combining the Hoteling

observer with differential imaging techniques to suppress the quasi-static speckle noise

and alternatively using multi-wavelength data to estimate the long-exposure point spread

function of the imaging system.
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Preface

Observing faint binary star companions from the ground using large astronomical tele-

scopes is inherently difficult due to the image degradation caused by imaging through

the turbulent atmosphere of the Earth. Adaptive optics (AO) correction of these tur-

bulence effects enables very high angular resolution imaging. Given adequate resolution

great difficulty then arises in distinguishing a faint companion from residual background

noise.

After detection, differential astrometry and photometry of faint companions in adaptive

optics observations is an important problem in astronomy (Roberts et al., 2005, 2007).

Methods are currently being developed for application to Extremely Large Telescope

(ELT) images of exoplanets (Kasper et al., 2008). For exoplanets, differential photometry

can be used to derive the planetary mass assuming one of the theoretical models for

either reflected or internal light (Baraffe et al., 2003). Hence, an estimate of the mass

of the planet could in principle be derived from a single observation. The importance

of accurate binary star photometry lies in determining one of the most basic properties

of a star: it’s mass. When the mass of a survey of stars is estimated accurately, this

information can serve as a test of stellar formation and evolution models (Turner et al.,

2008).

The acquisition of scientific data is carried out for a specific purpose. The quality of the

data produced by a measuring system should be judged on how well the recorded data

fulfilled that purpose. The primary motivation behind this thesis was to apply a task

based objective assessment of image quality to adaptive optics corrected astronomical

images, using the ideal linear observer to quantify the suitability of the data and the

performance of the imaging system to the tasks of detecting, locating and deriving

relative photometry of a faint binary companion. Although this task based assessment

strategy is relatively new in astronomy (Barrett et al., 2006) it is now common practice

in the field of medical radiology (Barrett & Myers, 2004).

The principal complication with using the ideal linear observer to perform faint com-

panion detection is the presence of a diffraction limited point source like noise pattern

referred to as quasi-static speckle noise. When applying the ideal linear observer to data

this noise signal appears identical to faint point sources. Hence this thesis also sets out

to investigate approaches to reducing the residual quasi-static noise source such that the

ideal linear observer can be applied to the processed data.

xv



Parts of the work presented in this thesis was carried out in collaboration with Professor

Harrison Barrett and Luca Caucci of the College of Optical Sciences, University of

Arizona, Dr. Szymon Gladysz of the European Organisation for Astronomical Research

in the Southern Hemisphere, Dr. Lewis Roberts of the Jet Propulsion Laboratory,

California Institute of Technology and Kevin Murphy of the Applied Optics Group.

Details of our collaborative work is outlined in the synopsis below.

Synopsis

Chapter 1 presents the background to imaging through atmospheric turbulence. A

general description of the propagation of light through the atmosphere is given, followed

by a look at the specific details of imaging with adaptive optics that this thesis is

concentrated on, namely point source detection and characterisation in the presence of

quasi-static speckle noise. The source of this noise is described and two commonly used

strategies for dealing with this type of noise are examined.

Chapter 2 introduces the mathematical framework for task based assessment of image

quality, which is fundamental to the rest of this thesis. The chapter begins with a detailed

overview of statistical decision theory, including a derivation of the receiver operating

characteristic curve using a binary decision model. The remaining bulk of this chapter

is given over to the derivation of the ideal linear observer, i.e. the Hotelling observer,

from the ideal observer. A Gaussian model is used in the derivation to describe the long

exposure adaptive optics corrected data upon which the Hotelling observer will operate.

The optimal estimators for the extraction of differential faint companion astrometry

and photometry are then derived. The mathematical similarities between the iterative

blind deconvolution estimator for intensity and the Hotelling estimator for intensity is

discussed.

Chapter 3 centres around the application of the Hotelling observer on simulated adap-

tive optics corrected data. The data simulation tool PAOLA is described. Work carried

out to test the performance of the Hotelling observer in varying simulated observing con-

ditions is reported upon. The robustness of the Hotelling observer to errors in estimate

values of the data was also investigated. The following section compares three methods

of applying the Hotelling observer to estimate the location of a faint companion in a

simulated adaptive optics corrected image. The three algorithms are described in detail

with their specific benefits and drawbacks discussed. This chapter concludes by extend-

ing the algorithm to also extract differential photometry from the data. The unbiased

Hotelling intensity estimator is compared to several other photometric approaches.



The experiments described in section (3.5) were carried out in collaboration with Kevin

Murphy of the Applied Optics Group, who carried out the experiment in the laboratory

and used my proposed Shack-Hartmann data analysis as an input to his optical vortex

detection algorithm.

Chapter 4 contrasts the differential astrometry and photometry calculated by the

Hotelling observer to two state of the art algorithms widely used in astronomy. The

PSF fitting routine StarFinder and the iterative blind deconvolution package Fitstars

are reviewed in section (4.1). Real adaptive optics corrected data of point sources was

available from the Lick observatory and was used to compare the methods by construct-

ing artificial binary images. The results of this comparison are presented in section

(4.2.2). As deconvolution and matched filtering are mathematically similar strategies

the peak signal to noise ratio was used in section (4.3) to show the benefit of prewhiten-

ing the data. The chapter closes with the analysis of three observed real binary stars,

with the Hotelling observer extracting comparable astrometry and photometry to the

StarFinder algorithm. Sections (4.2) and (4.4) describes work carried out with Dr Szy-

mon Gladysz, who provided and reduced the AO corrected Lick data and applied the

StarFinder algorithm to the artificial binary data, and Dr. Lewis Roberts who processed

the artificial binary data with the Fitstars code.

Chapter 5 addresses the primary limiting factor to faint point source detection, specif-

ically the presence of residual quasi-static speckle noise. An alternative data simulation

algorithm to PAOLA is presented, in which a model of the pupil phase is used to de-

fine the speckle noise. Section (5.2) reports upon the combination of spectral difference

imaging with the Hotelling observer. The results of this merger illustrate the power

of the Hotelling observer with dealing with spatially uncorrelated noise. The second

part of this chapter derives and quantifies the performance of the angular differencing

approach to suppressing quasi-static speckle noise. The primary goal of this method is

to reconstruct a PSF which once subtracted from the data minimises the noise residuals.

The residual image is processed by the Hotelling observer and the area under the esti-

mation receiver operating characteristic curve is used to quantify the performance of the

algorithm as a function of the angular separation of the star and faint companion. The

angular differencing approach is extended in section (5.3.5) to also make use of multi-

spectral data. The additional information provided by the multi-spectral data further

attenuates the quasi-static speckle noise and leads to an increase in the area under the

estimation receiver operating characteristic curve of a factor of 1.32.

Chapter 6 approaches the task of PSF reconstruction from multi-spectral data by a

different route to that laid out in chapter (5). An alternate image formation model is



presented, where the intensity in the focal plane of a telescope is described by a non-

linear relationship with the phase in the pupil plane, that is they are a Fourier transform

pair. By perturbing the unknown phase in a known manner the unknown phase and

hence the PSF can be recovered. A PSF recovery algorithm is presented which makes use

of the change in phase with wavelength. The level of speckle noise attenuation achieved

with this method is compared to the approaches employed in chapter (5).

Chapter 7 concludes the work presented in this thesis and discusses the implications for

point source detection and characterisation in highly corrected adaptive optics images.

Finally, some suggestions for future related topics of research are given.
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CHAPTER 1

ADAPTIVE OPTICS IMAGING

When light from an astronomical source passes through the atmosphere of the Earth

the incoming wavefront is distorted. This distortion arises due to light passing through

random fluctuations in the refractive index of the atmosphere caused by variations in

temperature, humidity and pressure. These changes in refractive index will result in

random optical path length differences both in space and time. The purpose of adaptive

optics (AO) when imaging with astronomical telescopes is to correct, or compensate, for

the distortion imposed upon the incoming wavefront.

1.1 The Kolmogorov Model of Turbulence

The distortion an incoming wavefront is subject to can be modelled using the Kol-

mogorov theory of turbulence (Kolmogorov, 1941). The Kolmogorov model describes

how energy flow is distributed throughout a turbulent fluid medium. It is assumed that

large-scale disturbances, on a scale called the outer scale L0, transfer kinetic energy

to other layers by breaking down into increasingly smaller disturbances. This process

continues until the energy is transferred to the smallest disturbance scale called the in-

ner scale l0. The Kolmogorov model assumes no energy is lost until the inner scale is

reached, at which point the energy is released as heat; see figure (1.1).

The mean refractive index of air is quite close to unity. However since the refractive

index of air is proportional both to temperature and pressure, temperature fluctuations

in the atmosphere result in refractive index fluctuations. Temperature changes are the

1
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flat wavefront
height(h)

L0

l0

distorted wavefront

Figure 1.1: Kolmogorov energy flow in a turbulent fluid

dominant factor in this process as pressure changes are smoothed out at the speed of

sound (Hardy, 1998).

Tatarskii (1961) introduced the use of the structure function to account for the slow

change in the mean values of properties of the atmosphere, such as humidity, pressure

and temperature. A structure function describes the mean square fluctuation, of the

scalar quantity qk, between two points separated by ∆r:

Dqk(r,∆r) =< |qk(r + ∆r)− qk(r)|2 >, (1.1)

where <> denotes an ensemble average. Obukhov (1949) showed that the atmospheric

temperature structure function can be expressed as:

Dt(∆r) = C2
t (∆r)

2
3 , (1.2)

where C2
t is the atmospheric temperature structure constant, a measure of the strength

of the temperature fluctuations. Roddier (Roddier, 1981, 1988) shows that refractive



Chapter 1: Adaptive Optics Imaging 3

index fluctuations are caused by temperature changes in the atmosphere, hence the

refractive index structure function, Dn, takes on a very similar form to equation (1.2):

Dn(∆r) = C2
n(∆r)

2
3 , (1.3)

where C2
n is the refractive index structure constant, a measure of the strength of the

refractive index variations. The power spectrum of the refractive index changes can be

expressed as (Tatarskii, 1961):

Φn(κ) = 0.033C2
nκ
− 11

3 , (1.4)

where κ is the spatial wave number, the modulus of a 3D vector. The quantity C2
n is

a good measure of the contribution that the atmospheric turbulence makes to a wave

propagating through it. It is important to note that the refractive index structure

constant varies with the altitude h of the turbulent layer. The Kolmogorov power

spectrum of the variation in the refractive index can therefore be re-written as:

Φn(κ, h) = 0.033C2
n(h)κ−

11
3 . (1.5)

The spatial properties of the turbulent atmosphere can now be fully described by a single

function, i.e. the C2
n function, under the assumption that κ is inside the inertial range,

2π/L0 < κ < 2π/l0, where the outer scale is also dependent on altitude.

1.2 Propagation of light through the turbulent atmosphere

This section will address the phase changes to a plane wavefront due to passing through

the turbulent atmosphere (Roddier, 1981). To approximate the continuous C2
n func-

tion the atmosphere can be modelled as a series of phase screens as shown by Lee &

Harp (1969). Monochromatic plane waves, of wavelength λ, are considered propagating

through an atmospheric layer of thickness δh towards a ground based observer, see figure

(1.2).

The thickness of the atmospheric layer is large compared to the scale of the turbulent

eddies and therefore Gaussian statistics can apply, but the layer is also thin enough such

that diffraction effects can practically be ignored. Denoting the incident complex field

as Ψh = 1 and the resulting complex field after emerging from the thin layer as:
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Ψh(r)

r

z

h

δh

Ψh = 1

Figure 1.2: Model of thin turbulent layer of the atmosphere

Ψh(r) = eiφ(r), (1.6)

where the change in phase, φ(r) produced by the fluctuations in the refractive index

n(r, h) is given by:

φ(r) = k

∫ h+δh

h
dz n(r, z), (1.7)

where k = 2π/λ is the wave number. Following on from here we now wish to define

Dφ(r), the phase spatial structure function, in terms of the variations in refractive index.

The covariance of the phase, φ(x), is given by:

Bφ(r) =< φ(x)φ(x+ r) >, (1.8)

where <> denotes the spatial average and relates to the phase structure function via:

Dφ(r) = 2[Bφ(0)−Bφ(r)], (1.9)

Roddier (1981) shows that using equation (1.3) Dφ(r) reduces to:

Dφ(r) = 2.914k2C2
nδhr

5
3 , (1.10)



Chapter 1: Adaptive Optics Imaging 5

and the coherence function Bh(r) can be expressed as:

Bh(r) = exp

[
−1

2
Dφ

]
,

= exp

[
−1

2
(2.914k2C2

nδhr
5
3 )

]
.

(1.11)

The atmosphere can be modelled as a stack of thin layers; from the perspective of the

ground the effects of the atmospheric layers add together linearly. The contribution from

each layer to the phase comes from the strength of the refractive index fluctuations over

each layer, i.e. C2
nδhj . The coherence function for multiple layers is therefore found by

summing over the layers:

B0(r) = exp[−1

2
(2.914k2r

5
3

∑

j

C2
n(hj)δhj)]. (1.12)

This function is of great importance when determining the effect of the atmospheric

turbulence on the performance of an imaging system.

An imaging system can be thought to consist of an astronomical telescope coupled with

the atmosphere. The optical transfer function (OTF) of this system, for long exposure

imaging, can be expressed as:

S(f) = B(f).T (f), (1.13)

where B(f) is the atmospheric transfer function, T (f) is the telescope transfer function

and f is the spatial frequency in cycles per radian. Fried (1966) introduced the concept

that the resolving power of a telescope, R, could be defined as the integral of the optical

transfer function of the system i.e.:

R =

∫
B(f).T (f)df. (1.14)

Fried showed that for large apertures the resolving power only depends upon the atmo-

spheric turbulence,

RLarge Apertures =

∫
B(f)df. (1.15)
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For small telescopes where the atmospheric effects are negligible the resolving power is

a function of the imaging wavelength and the size of the telescope:

RSmall =

∫
Td(f)df =

π

4

(
d

λ

)2

. (1.16)

Fried also defined the diameter of a telescope, called r0, which would have the same

resolving power as the atmosphere:

∫
T (f)df =

∫
B(f)df. (1.17)

Comparing equations (1.15) and (1.16) we see that,

R =

∫
B(f)df =

π

4

(
d

λ

)2

. (1.18)

From equation (1.12) Roddier (1981) shows that the atmospheric transfer function can

be expressed as:

B(f) = exp(−1

2
Kf

5
3 ), (1.19)

where K can be shown to be:

K = 3.44
(r0

λ

)− 5
3
, (1.20)

these equations lead to an expression for the atmospheric transfer function in terms of

the Fried coherence length (Fried, 1966) r0:

B(f) = exp

(
−3.44

(
λf

r0

) 5
3

)
,

= exp

(
−3.44

(
r

r0

) 5
3

)
.

(1.21)

Equating this expression to that in equation (1.12), r0 can be defined in terms of the

integrated turbulence:
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r0 =


0.423k2

∑

j

δhjC
2
n(δhj)


 . (1.22)

The phase spatial structure function can now be expressed in terms of the Fried coherence

length:

Dφ(r) = 6.88

(
r

r0

) 5
3

. (1.23)

The Fried coherence length is a good measure of the turbulence strength of the atmo-

sphere. Typically r0 has a value on the order of 10 cm and so any telescope bigger than

10 cm is limited by turbulence, r0 can therefore give an estimate of the performance of

an atmospheric limited imaging system though the optical transfer function relationship

(Hardy, 1998; Fried, 1965):

< S(f)Long Exposure >= T (f) exp

(
−3.44

(
λf

r0

) 5
3

)
. (1.24)

Furthermore Fried showed that the combined transfer function of an imaging system

depends upon the size of the telescope D for short exposure imaging:

< S(f)Short Exposure >= T (f) exp

(
−3.44

(
λf

r0

) 5
3

[
1−

[
λf

D

] 1
3

])
. (1.25)

This equation can also apply to long exposure images if the short exposure images are re-

centred, to remove tilt, and then co-added. When an AO system is used the performance

of the imaging system is limited by the ability of the AO system to correct the incoming

distorted wavefront. The following sections will outline the imaging of a faint companion

with an AO system and how to overcome some of the problems encountered with this

type of data acquisition.

1.3 Adaptive Optics

At a well selected astronomical site the coherence length of the atmosphere is typically

on the order of 10−20cm at visible wavelengths (Roddier, 1981). As early as the start of

the twentieth century large telescopes, i.e. D > 1 m, were being built to harness more

light to image fainter sources. These instruments were limited in angular resolution
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by the atmosphere having an effective diameter equal to the coherence length of the

atmosphere.

An optical system based on feedback information which could compensate optical path

length variations and hence flatten an incoming wavefront was proposed by Babcock

(1953).

An astronomical adaptive optics system has three main tasks: measurement of the

incoming distorted wavefront, computation of the control signals to be sent to the wave-

front corrector and physically correcting the wavefront through the use of a wavefront

corrector e.g. a deformable mirror.

47

it is not possible to give here all the technical details. Nor is that the goal of this

thesis. For this reason, the description will cover only the essential topics relevant to

this thesis and, in particular, those concepts and components that are necessary for a

complete understanding of the adaptive optics simulations carried out in this thesis.

3.6 Components of an Adaptive Optics System

Figure 3.2 shows the typical configuration of an astronomical adaptive optics tele-

scope.

PSfrag replacements

Source

Turbulence

Deformable
mirror

Science
camera

Wavefront Wavefront
sensorreconstructor

Beamsplitter

Figure 3.2: Configuration of an adaptive optics telescope

A distorted wavefront coming from a distant source is reflected by the telescope’s

primary and secondary mirrors to a device called “deformable mirror,” which tries

to reduce the wavefront distortion due to atmospheric turbulence by applying an

appropriate phase correction. The light reflected by the deformable mirror is then

Figure 1.3: Setup of an Adaptive Optics Telescope (Caucci, 2007)

An incoming distorted wavefront is first deflected off the primary and secondary mirrors

of the telescope, then onto the deformable mirror which attempts to correct, or flatten,

the wavefront by applying an appropriate estimated phase correction. The light is then

split between the science camera and the wavefront sensor. The wavefront sensor tries

to estimate the instantaneous phase in the pupil plane of the telescope. This phase

estimate is then used by the control system to determine the correct signals to send to

the deformable mirror to correct the wavefront, see figure(1.3). It should be noted that

in most systems, the telescope is not afocal as is shown in figure(1.3), the first element

of the AO system will then typically be a collimator.
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This arrangement of subsystems can be operated in two modes: open-loop and closed

loop. In an open-loop setup the wavefront is measured in an uncorrected state. The

necessary corrections are computed and applied to the wavefront. The time lag in

sensing and correcting the wavefront must be less than the correlation time scale of

the atmospheric turbulence. In general open-loop systems are only used when closed-

looped system cannot be (Hardy, 1998), for example to pre-correct a laser beam for

propagation up through the atmosphere. In closed-loop operation the wavefront sensor

measures a corrected wavefront i.e. the wavefront corrector is now the first element in

the system. Therefore the wavefront sensor only sees the residual, or compensated, error

in the wavefront.

1.3.1 Wavefront Sensing

An astronomical wavefront sensor is required to measure the incoming wavefront and

relay the compensated information to the wavefront reconstructor (Rousset, 1993). As

natural reference sources emit broadband light it is not practical to make direct mea-

surements of the optical phase, such as with an interferometer (Hardy, 1998). It is more

reasonable to measure the direction of propagation of the local wavefront. The Shack-

Hartmann setup (Roddier, 1981), see figure (1.4), is the most commonly used approach

to astronomical wavefront sensing.

The Shack-Hartmann wavefront sensor spatially samples the wavefront with a two di-

mensional lenslet array, that is the lenslet array acts as a spatial low pass filter (Hardy,

1998). For an incoming planar wavefront the lenslet array will form a pattern of spots

focused on a detector e.g. a CCD. The centroids of these spots can then be estimated.

When the incoming wavefront is not a plane wave but has had some distortion imposed

upon it the lenslet array will form spots in different locations from the plane wave case.

This shift in the positions of each spot can be used to estimate the local slope of the

wavefront in each lenslet sub-aperture. Using measurements from the entire array a two

dimensional approximation of the wavefront can be constructed.

1.3.2 Wavefront Reconstruction and System Control

Taking the sampled wavefront slope measurements from the wavefront sensor, the recon-

struction algorithm must stitch these together in two dimensions preserving the relative

phase between the slopes. This is shown in one dimension in figure (1.5).

When the adaptive optics system is operating in a closed loop fashion, the wavefront

sensor measures the open-loop phase distortion, φ, minus the applied phase correction,
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Lenslet array

Flat Wavefront

Distorted Wavefront

CCD

Figure 1.4: Shack-Hartmann Wavefront Sensor. The displacement of the image on
the sensor is proportional to the wavefront distortion from the reference wavefront.

Original Wavefront

Slope measurements

Reconstructed Wavefront

Output to wavefront corrector

Figure 1.5: Wavefront Reconstruction using slope measurements.
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ϕ. The goal of the control system is to compute a set of command signals which will

minimise this residual error. There are two main approaches to wavefront reconstruction.

The first involves using a least-squares type reconstructor. This approach is based

around minimising the measurement error, εs, of the wavefront sensor. If S denotes

the wavefront sensor slope measurements, A the interaction matrix of the wavefront

corrector and φ̃ the estimated phase values, the measurement error is given by:

ε = ||S −Aφ̃||2, (1.26)

where || || is the norm of a vector. The wavefront phase φ̃ is estimated to minimise εs.

The least-squares solution verifies:

(ATA)φ̃ = ATS, (1.27)

where AT is the transpose of A.

The second approach is formulated around minimising the wavefront residual variance.

If ϕ̂ is the estimated wavefront correction, the residual wavefront variance, εϕ, to be

estimated is:

εϕ =
1

Areaaperture

∫

aperture

〈
(φ− ϕ̂)2

〉
dAreaaperture. (1.28)

The estimate of the phase can be given as a linear expansion:

ϕ̂ =
∑

i

φifi, (1.29)

where φ = {φi} is the same as in the least squares reconstructor and the functions fi

are the influence functions of the wavefront corrector. The residual wavefront variance

minimisation has a matrix solution B called the reconstruction matrix:

B × estimated wavefront slopes = correction on the wavefront corrector, (1.30)

or,
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B = C−1
f

[
CφA

T (ACφA
T + Cn)−1

]
, (1.31)

where Cf is a N × N matrix of scalar products of the wavefront corrector influence

functions fi, N is the number of wavefront corrector commands or phase values, Cφ is

the covariance matrix of φ and Cn is the covariance matrix of the noise in the wavefront

sensor measurement.

1.3.3 Wavefront Correction

The task of the wavefront corrector is to take the information gathered and processed by

the wavefront sensor and reconstructor and correct in real time the incoming distorted

wavefront. In practice the phase change applied to the incoming wavefront is achieved

by altering the optical path length through which the wavefront passes, this is akin to

the phase change induced through passing through a varying refractive index medium.

Deformable mirrors are mirrors whose surface shape can be altered in order to apply the

required phase change to an incoming wavefront (Tyson, 1998), see figure (1.6).

Distorted Wave

Corrected Wave

Deformable Mirror

Figure 1.6: Wavefront Correction.

The shape assumed by the deformable mirror is controlled by an array of actuators

beneath the surface of the mirror. Each actuator has a function which describes its

influence upon the shape of the mirror when it is commanded to move. The mirror phase

ϕ can be approximated as a linear superposition of the n actuator influence functions

fj by:

ϕ(x) =
n−1∑

j=0

cjfj(x), (1.32)
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where cj is the jth actuator command signal.

1.4 Speckle Noise in Adaptive Optics Images

Attempting to detect a faint companion above the halo produced by the diffraction

wings of a star is very difficult. When imaging with adaptive optics from the ground,

the uncorrected part of the incoming wavefront will produce a random intensity fluctu-

ation in this halo. This pattern is referred to as residual speckle noise. These residual

speckles arise primarily from two sources: short exposure ‘atmospheric’ speckle pinned

to the diffraction pattern of the telescope and ‘quasi-static’ speckle from uncorrected

aberrations in the system. The instrumentally induced quasi-static speckles (Marois

et al., 2005) will not average out over time (Hinkley et al., 2007; Gladysz & Christou,

2008), but produce a time varying point spread function (PSF).

The relationship between the phase of the wavefront in the pupil plane of the telescope

and the focal plane intensity distribution is very important in understanding the forma-

tion of residual speckle noise. It can be shown that the Fourier transform of the pupil

autocorrelation function characterises the image of a point source i.e. an Airy disk in

the case of a diffraction limited telescope with a circular aperture (Roddier, 1999). In

the presence of atmospheric turbulence, the resolution of a telescope larger than r0 is

effectively turbulence limited, adaptive optics attempts to overcome this limitation.

A good description of the light intensity distribution and the wave amplitude in the focal

plane is given by Aime & Soummer (2004). The complex amplitude of the wavefront in

the pupil plane can be expressed as:

Ψ1 = [A+ a(x, y)]P (x, y), (1.33)

where A corresponds to an incoming plane wave, a(x, y) refers to the random term of

the uncorrected part of the wavefront and P (x, y) characterises the pupil transmission.

The field in the focal plane is obtained by taking the Fourier transform of Ψ1:

Ψ2 = A F [P (x, y)]︸ ︷︷ ︸
C(x,y)

+F [a(x, y)P (x, y)]︸ ︷︷ ︸
S(x,y)

. (1.34)

The C(x, y) term above describes the wave amplitude when no turbulence is present i.e.

an Airy pattern, whereas the random term S(x, y) is associated with the speckle field

produced by the ‘frozen’ atmosphere. How does this speckle field arise? It is the result
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of filling the pupil of the telescope with r0-sized sub-pupils which synthesises a filled-

aperture interferometer affected by random phase errors. When the resulting fringes

interfere constructively with each other a bright speckle of width ≈ λ/D appears in the

focal plane, where D is the diameter of the pupil (Racine et al., 1999). Given enough

realisations, the complex amplitude of the speckle field, S(x, y), will follow a circular

Gaussian distribution. This is equivalent to a time averaged view of the statistics of the

turbulent atmosphere.

However on short time scales the picture is very different. Aime & Soummer (2004)

describe the short exposure image plane intensity as:

|Ψ2(x, y)|2 = |C(x, y)|2 + |S(x, y)|2 + 2Re[C∗(x, y)S(x, y)]︸ ︷︷ ︸
speckle pinning

. (1.35)

Since the random field is modulated by the pupil diffraction pattern the last term in

equation (1.35) leads to the phenomena of speckle pinning as described by (Bloemhof

et al., 2001; Sivaramakrishnan et al., 2002; Bloemhof, 2003, 2004) see figure (1.7).L86 AIME & SOUMMER Vol. 612

Fig. 1.—Illustration of two independent realizations of instantaneous AO
PSFs. Pinned speckles on the diffraction rings are clearly visible. The simulated
image has a Strehl ratio of 90% and was made with the PAOLA software
package (Jolissaint 2004).

Fig. 2.—Illustration of the decentered Gaussian statistics of the wave amplitude , in the focal plane for two arbitrary spatial positions A and B. TheseAW (x, y)S2
figures have been obtained using 3000 independent AO-corrected phase screens provided by the PAOLA software. This illustration uses a perfect Airy pattern
for the deterministic term . Note the decentered Gaussian statistics on the top of the diffraction ring. At the zeros of the term , the statistics become aC(r) C(r)
centered circular Gaussian, similar to that of laser speckles without continuous background.

The statistics of the wave amplitude at each position in the
focal plane can be easily derived from this model. The complex
amplitude is computed as a sum of phasors over theS(x, y)
pupil aperture weighted by the random complex term .a(x, y)
Assuming a large enough number of independent values of

, i.e., a large number of coherent cells over the telescopea(x, y)
aperture after AO correction, the complex amplitude S(x, y)
follows a circular Gaussian distribution whatever the statistics
of , thanks to the central limit theorem. Therefore, thea(x, y)
wave complex amplitude in the focal plane follows aW (x, y)2
circular Gaussian law, decentered by the mean of the amplitude

.AW (x, y)S p C(x, y)2
This problem is formally equivalent to the study of laser speck-

les over a coherent background in the context of holography.
The statistics of were given by Goodman (1975):W (x, y)2

2 21 ![y ! C(x, y)] " hP(y, h) p exp , (4){ }2 2pAFS(x, y)F S ! FS(x, y)F 1

where y and h denote the real and imaginary part of W (x, y)2
at the position .(x, y)
The deterministic term can be taken as real withoutC(x, y)

loss of generality. For example, in the case of a circular aperture
of diameter D, we obtain the Airy amplitude C(r) p D/

, with . We give a numerical2 2 1/2[J (pDr)/(2r)] r p (x " y ) /(lf )1
illustration of the statistics of in Figure 2 for two radialW (x, y)2
positions r.

2.2. Statistics of the Light Intensity in the Focal Plane
The instantaneous intensity in the focal plane is the modulus

squared of the amplitude:

2 2 2 ∗FW (x, y)F p FC(x, y)F " FS(x, y)F " 2 Re [C (x, y)S(x, y)].2

(5)

The term coupling the deterministic and random parts (C and
S) corresponds to the so-called speckle pinning, discussed by
several authors, using a first-order phase expansion (Bloemhof
et al. 2001; Bloemhof 2003, 2004) or higher order expansions
(Sivaramakrishnan et al. 2002; Perrin et al. 2003).
The mean intensity (long-exposure image) is simply the sum

of the deterministic diffraction pattern with a halo produced
by the average of the speckles,

2 2 2AFW (x, y)F S p FC(x, y)F " AFS(x, y)F S p I " I , (6)2 c s

since (circular Gaussian). We use∗ ∗AS(x, y) S p AS(x, y)S p 0
the notations for the intensity of the determin-2I p FC(x, y)Fc

istic part of the wave, proportional to the perfect PSF, and
for the halo created by the speckle average.2I p AFS(x, y)F Ss

The model allows to be a function that varies with the radialIs
distance r, as is the case for an actual AO halo. AO PSF and
halo structures have already been studied (Moffat 1969; Racine
1996; Racine et al. 1999).
At a given position in the focal plane, the pinned speckle

term of equation (5) does not contribute to the mean intensity;
it only contributes to the variance. This variance can be directly
computed using the Gaussian property of . It is, however,S(x, y)
interesting for a better understanding of the phenomenon to
compute first the probability density function (PDF) of the
intensity. In all cases, we emphasize that all these properties
concern the speckle pattern at one point; it is unnecessary to
invoke higher order spatial analysis for such a pointwise anal-
ysis. The PDF for the intensity, known as a modified Rician
density, was given by Goodman (1975) and also used by Ca-
gigal & Canales (1998, 2000, and reference therein):

! !2 I Ic1 I" IcP (I) p exp ! I , (7)( )I 0( )I I Is s s

Figure 1.7: Two examples of pinned speckle Aime & Soummer (2004)

A better grasp of the speckle pinning effect can be achieved by looking at the proba-

bility density function (PDF) of the focal plane intensity distribution. This situation

is equivalent to the case of laser speckle added to a coherent background (Goodman,

1975). Soummer et al. (2007) shows that the derivation of the PDF for the focal plane

intensity leads to a “modified Rician distribution” derived by Goodman (1975) and used

by Cagigal & Canales (2000). The modified Rician distribution is given as:
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PI(I) =
1

Is
exp

[
−I + Ic

Is

]
I0

[
2
√
I
√
Ic

Ic

]
, (1.36)

where I0 is the zero order Bessel function of the first kind, Is corresponds to the speckle

halo produced by random intensity variations, Ic is proportional to the perfect PSF and

therefore at successive Airy rings Ic is large and small; this then leads to an amplification

in the variance of the speckles. When the PSF is at zero no amplification of the speckle

occurs and the speckle statistics revert to the negative exponential PDF which charac-

terises the statistics of classical laser speckle. Equation (1.36) holds for AO corrected

data with a Strehl ratio greater than 0.4.

When attempting to detect a faint companion in this field a coronagraph could be used

to reduce the speckle field. The variance of residual speckle is given as:

σ2
I = I2

s + 2IsIc. (1.37)

Poisson statistics must also be accounted for when the number of photons is small:

σ2
p = Ic + Is. (1.38)

The variances add together and so the total variance becomes:

σ2 = 2IcIs + Ic︸ ︷︷ ︸
σ2
c

+ I2
s + Is︸ ︷︷ ︸
σ2
s

. (1.39)

A perfect coronagraph can only remove the coherent part, C(x, y), of the focal plane

complex amplitude. Therefore only the variance σ2
c can be effected by cancelling Ic. The

variance of the speckle term σ2
s will be unaffected. Aime & Soummer (2004) showed

that a coronagraph will be efficient at reducing the speckle variance when Ic > Is in the

original non-coronagraphic AO images.

The time averaged (long exposure) view of equation (1.35) is the sum of the telescope

diffraction pattern with a halo of averaged speckles:

< |Ψ2(x, y)|2 >= |C(x, y)|2︸ ︷︷ ︸
Ic

+< |S(x, y)|2 >︸ ︷︷ ︸
Is

. (1.40)
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1.4.1 Speckle Noise Discrimination

Christou et al. (2006) investigated the distribution of the on-axis intensity in AO short

exposure images and found that the distribution showed a negative skewness. As stated

above in short exposure AO images the off-axis intensity distribution can be modelled as

a modified Rician distribution. Gladysz & Christou (2008) propose a speckle sensitive

method which allows discrimination between scattered speckles and real faint sources in

an image. They exploit the morphological differences in the on and off axes irradiance

distributions to make the distinction between faint sources and speckles. Following on

from this work Gladysz & Christou (2009) formulated a stochastic speckle discrimination

(SSD) method. For a series of short exposures this technique computes Ic and Is for

each pixel in the focal plane from a time series for each pixel. The SSD algorithm then

aims to build a map of local intensity statistics through a transform of spatial intensity

variations. It should be noted that this SSD approach is typically used on recentred short

exposure shift-and-add (SAA) images. The authors report that two spatial transforms

gave good results:

ISAA 7→
Is(x, y)

Ic(x, y)
, (1.41)

ISAA 7→
Is(x, y)

Ic(x, y)
m3(x, y), (1.42)

where m3 is a sample skewness estimator defined as:

m3 =
1

N

N−1∑

j=0

(
Ij − E(I)

σI

)3

, (1.43)

where N is the number of frames in the data cube. Gladysz & Christou (2009) processed

data from observations of the binary star HD 8799 (mv = 4.8) with this method, see

figure(1.8). They noted that the statistical map smoothed out the anisotropies in the

SAA image and that the faint companion was much more visible in the statistical map

than it was in the original SAA image.

If one does not have access to short exposure data, alternative methods are available to

reduce residual quasi-static speckle from long exposure data.
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Figure 1.8: SAA image of HD 8799 in a square root scale (left), Is/Ic (centre) and
m3.Is/Ic (right)(Gladysz & Christou, 2009)

1.5 Differential Imaging

Racine et al. (1999) proposed that quasi static speckle noise could be reduced by sub-

tracting images obtained in two wavelength bands if the planet signal is much fainter in

one of the bands. This would be the case when observing gas giant exoplanets in the

methane band (1.6µm) (Rosenthal et al., 1996), see figure(1.9). This imaging scheme is

referred to as Spectral Differential Imaging (SDI).

Before the two images could be subtracted from each other two main precautions are

needed Marois et al. (2000):

1. One of the frames must be rescaled as the speckle pattern is proportional to wave-

length (Marois et al., 2004).

2. The bandpass filters must be close together to preserve the similarities in the

speckle structure.

3. Narrow bandwidths must be used to reduce chromatic elongation of the speckles.

Marois et al. (2000) showed that when images from three wavelengths are available a

more efficient double differencing of the data can be carried out. Suppose three images

are recorded at three wavelengths: I1(λ1), I2(λ2) and I3(λ3) and λ1 < λ2 < λ3, the

double difference of these images is then given as:

dd = (I1 − I2)− k(I1 − I3), (1.44)

where the constant k is given by the ratio of the Strehl ratio’s (SR) of the data:

k =
SR(I1)− SR(I2)

SR(I1)− SR(I3)
. (1.45)



Chapter 1: Adaptive Optics Imaging 18

Lyu 2006). A number of instrumental speckle-attenuation meth-
ods have been proposed, such as spectral differential imaging
(Racine et al. 1999;Marois et al. 2000a, 2000b, 2005), azimuthal
differential imaging (Marois et al. 2006), integral-field spectros-
copy (Sparks & Ford 2002; Berton et al. 2006; Thatte et al.
2007), precise wavelength control methods such as those de-
veloped at the High Contrast Imaging Testbed (Trauger et al.
2004), focal plane wave front sensing (Codona & Angel 2004;
Kenworthy et al. 2006), and nulling interferometry (Liu et al.
2007).

The Simultaneous Differential Imagers (SDIs) at the VLT and
MMT, built and commissioned by our team (Lenzen et al. 2004,
2005; Close et al. 2005a), use a spectral differential speckle-
attenuation technique (pioneered by Racine et al. 1999; Marois
et al. 2000a, 2000b, 2005). It exploits a methane absorption fea-
ture at 1.62 !m (see Fig. 1) which is robustly observed in sub-
stellar objects with spectral type later than T3.5 (Geballe et al.
2002; Burrows et al. 2001). SDI uses specialized hardware to
image simultaneously inside and outside this methane feature
with custom 25 nm filters (see Fig. 1). Since the superspeckles
are coherent with the starlight and both starlight and speckles
have a flat spectrum (see Fig. 1) in this narrowwavelength band
("k/k ’ 1:6%), subtracting the ‘‘on’’ and ‘‘off ’’ methane ab-
sorption images removes the starlight and its speckles, while
preserving light from any substellar methane companion to the
star.

We have completed a 54 star survey with the SDI device at the
VLTandMMT. Survey stars were chosen primarily according to
proximity to the Sun (P50 pc) and youth (P300 Myr, typically
<100Myr).We observed 47 young (P250Myr) stars, three nearby
stars with known radial velocity planets, and four very close

(P20 pc) older solar analogs. We obtained contrasts of !H >
10 mag (5 #) at 0.500 for 45% of target objects at the VLT and
contrasts of !H > 9 mag (5 #) at 0.500 for 80% of our targets.
The VLT SDI device is fully commissioned and available to the
community, and the MMT SDI device is a PI instrument with the
ARIES camera. In contrast, the dedicated planet-finding instru-
ments such as Sphere and Gemini Planet Imager (Dohlen et al.
2006; Macintosh et al. 2006) being built at the VLTand Gemini,
respectively, will not see first light for several years. Thus, as a
precursor to planet surveys with these dedicated planet-finding
cameras, the results from the SDI devices are especially timely
and relevant, particularly to inform the large Gemini Near-Infrared
Coronagraphic Imager survey starting in 2007 (M. Liu et al. 2005,
unpublished).

2. THE SIMULTANEOUS DIFFERENTIAL IMAGERS
AT THE VLT AND MMT

TheVLTSDIwas built at theUniversity ofArizona byL.M.C.
and installed in a special f/40 camera relay for the VLTAO camera
CONICA built by R. L. at the Max Planck Institute for Astron-
omy, in Heidelberg, Germany (Lenzen et al. 2003; Rousset et al.
2003). These were both installed at the VLT in 2003 August. The
MMT SDI was also built at the University of Arizona. In 2004
February, it was installed in the ARIES f /30 camera built by
D. M. Both devices are available to the observing communities
of their respective telescopes.

2.1. Hardware Considerations

The SDI device consists of a custom double Wollaston, which
splits the incoming AO beam into four identical beams (using
calcite birefringence tominimize noncommon path error—adding
onlyP10 nm rms of differential noncommon path errors per the
first few Zernike modes; Lenzen et al. 2004). Each beam then
passes through a narrowband filter with a central wavelength
either on or off the methane absorption. Three different filters
were used; all filters were placed in different quadrants on the
same substrate. SDI filters for the VLT and MMT were manu-
factured by Barr Associates. Filter wavelengths were chosen on
and off the methane absorption feature at 1.62 !m and were
spaced closely (every 0.025 !m) in order to limit residuals due to
speckle and calcite chromatism. We used four filters F1, F2, F3a,
and F3bwithmeasured cold central wavelengths F1 ! 1:575!m,
F2 ! 1:600 !m, and F3a ! F3b ! 1:625 !m. The filters are ap-
proximately 0.025 !m in bandwidth (1.6%). The SDI filter trans-
mission curves overlaid on a theoretical young planet spectrum
(D. Sudarsky 2004, private communication) are presented in
Figure 1.

2.2. Discoveries with the SDI Cameras

The SDI device has already produced a number of important
scientific results: the discovery of the important calibrator object
AB Dor C (Close et al. 2005b) which is the tightest (0.1600) low-
mass (0:090" 0:05M#,$100 times fainter) companion detected
by direct imaging; the most detailed methane surface maps of
Titan from the pre-Cassini era (Hartung et al. 2004); the dis-
covery of $ Ind Ba and Bb, the nearest binary brown dwarf
(McCaughrean et al. 2004); the discovery of SCR 1845%6357B,
a very close (3.85 pc) T6 brown dwarf (Biller et al. 2006b); and
evidence of orbital motion for Gl 86B, the first knownwhite dwarf
companion to an exoplanet host star (Mugrauer & Neuhäuser
2005). In fact, the SDI device discovered all known brown dwarfs
within 5 pc of the Sun. It has also set the best upper limit on the
luminosity of the older ($1 Gyr) extrasolar planet around $ Eri.

Fig. 1.—SDI filter transmission curves overlaid on the theoretical spectrum
(D. Sudarsky 2004, private communication) of a young extrasolar planet (30 Myr,
3MJ). Filters 1 and 2 sample off the 1.62 !mCH4 absorption feature, while filter
3 samples within the absorption feature. In contrast, the spectrum of the K2V star
$ Eri (Meyer et al. 1998) is flat across the whole wavelength band. Subtracting
images taken in filters ‘‘on’’ and ‘‘off ’’ the methane absorption feature will re-
move the star and speckle noise (which is coherent with the starlight) while pre-
serving any light from giant planet companions. (Details of the complex SDI
data pipeline are provided in x 2.3.)
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Figure 1.9: SDI filter transmission curves with an overlaid theoretical spectrum of a
modelled 30 Million year old 3 Jupiter mass extrasolar planet (Biller et al., 2007). The
F1 and F2 filters observer the ‘off’ 1.62 µm methane absorption feature, while the F3
filter samples directly ‘on’ the absorption feature. As a companion the spectrum of the
K2 V star ε Eri (Meyer et al., 1998) is shown to be flat across this wavelength band.
The subtraction of the ‘on’ and ‘off’ methane absorption images will reduce the star

and quasi-static speckle noise without cancelling the signal of the companion.

Using this method speckle noise attenuation on the order of a factor of ∼ 2 was reported

Marois et al. (2005). Biller et al. (2007) conducted a survey of forty five nearby stars

utilising this double difference SDI method. They achieved high H-band contrasts of

greater than ten magnitudes at a separation of 1” for 45% of their data.

Another differential imaging approach to reduce quasi-static speckle noise was proposed

by Marois et al. (2006), which is similar to the roll deconvolution technique (Schneider

& Silverstone, 2003), developed to reduce the effect of static aberrations on the Hubble

Space Telescope.

This method, referred to as Angular Differential Imaging (ADI), relies upon the fact that

over the course of an observation the sky rotates about the celestial north pole relative

to an observer. Hence if a sequence of images are acquired on a ground-based altitude

/ azimuth telescope with the instrument de-rotator of the telescope turned off a faint

companion signal will also appear to rotate along with the field of view. Turning off the

telescope de-rotator has the added benefit of improving the stability of the quasi-static

PSF structure.
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The ADI approach aims to reduce quasi-static speckle noise in two steps (Marois et al.,

2006), see figure (1.10):

1. Reduction of correlated speckles by subtraction of a reference PSF,

2. Averaging of the residual uncorrelated noise by combination of the residual images

after the field of view of each from have been aligned.

Figure 1.10: The ADI algorithm carries out two primary operations in the data: first a
reference PSF is constructed by taking the median of the image sequence, this reference
PSF is then subtracted from each individual frame in the sequence, the residual data

is then derotated and medianly combined (Thalmann, 2009).

The reference PSF is created from the acquired sequence of images by taking the mean

of a number of images for which the faint companion has moved significantly, but the

PSF has not changed. The level of noise reduction is a function of the angular separation

of the companion and the parent star, the number of reference images available to the

algorithm and the image exposure time. Whilst imaging on Altair NIRI (Hodapp et al.,

2003) at the 8m Gemini telescope a quasi-speckle noise attenuation of a factor of ∼ 100

was reported while observing Vega.



CHAPTER 2

OPTIMAL DETECTION AND CHARACTERISATION OF

FAINT COMPANIONS

This chapter introduces the subject of statistical signal decision theory. The decision of

interest in this thesis is the detection of a faint companion buried in the intensity halo of

its parent star. The receiver operating characteristic curve will be defined using a binary

decision model as a method of quantifying the task performance of an imaging system

and decision making algorithm. The area under the receiver operating characteristic

curve will be used as a measure of the performance of decision making algorithms. The

optimal linear observer, i.e. the Hotelling observer, will be rigorously derived from

the ideal observer using the assumption that Gaussian statistics apply to the data.

Furthermore the Hotelling estimator for differential astrometry and photometry will be

presented.

2.1 Statistical Decision Theory

In general terms the objective, or task, of an imaging system is to gather information

about the object which produced an observed image. This objective can be broken down

into two types: classification and estimation. The goal of a classification task is to label

the object, that is to assign the object to a particular class to which it belongs. The

purpose of an estimation task is to extract useful numerical information from the image

in question.

Science images are obtained for a distinct reason or purpose. The science task itself can

define how well the task can be carried out with the imaging system. When a computer

20
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algorithm and not human observers are used to carry out a task it is possible to define an

ideal observer, which given the input data, e.g. an image of a binary star and information

about the statistics of the imaging process, can achieve the ‘best’ possible performance

for that task. Assessment of the task fulfilment will thus provide a measurement of the

performance of the imaging system and a method of defining the quality of the images

acquired for the task of interest. This type of objective assessment of image quality

plays an important role in medical imaging (Barrett & Myers, 2004) and has recently

been applied to the field of astronomy (Barrett et al., 2006; Burke et al., 2009).

2.1.1 Binary Decision Model

The goal of a classification task in faint companion detection is to determine whether

or not a companion is present in an image. This is a binary classification problem

(Barrett et al., 1998) or a two-alternative forced-choice (2AFC) test. The process of

image formation is always corrupted by noise and due to the random nature of this

noise the process is best described statistically. An example of a general classification

task is shown in a flow chart in figure (2.1).

Imaging
Process

object (f) +

Noise

Data (g) Observation

Test Statistic (t)

Decision

H0 or H1

Figure 2.1: Flow chart representing a classification task

For each image, or data, under consideration we must decide between two hypotheses, H0

(companion absent) or H1 (companion present). Each image must be assigned into one
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of two decision spaces Γ0 or Γ1. There cannot be any equivocation in the decision process

which we will now describe. A scalar t, referred to as the test statistic, is used to make

the classification decision. A discriminant function is applied to the data to compute

the test statistic: this is the observation. The discriminant function or observer then

compares the test statistic, t, to a decision threshold, tc and hence assigns the data, g, to

a particular decision space. When the test statistic is less than the decision threshold,

t < tc, the data is assigned to the H0, companion absent, hypothesis, when the test

statistic is greater than or equal to the decision threshold, t ≥ tc, the H1 hypothesis

is chosen. This decision process is never perfect because data is always corrupted by

noise. For a 2AFC test there are four possible outcomes to this hit-miss detection task,

as shown in table (2.1).

Observer Response Signal Present Signal Absent

YES “hit” or “false alarm” or

True Positive (TP) False Positive (FP)

NO “miss” or “correct rejection” or

False Negative (FN) True Negative (TN)

Table 2.1: Possible Answers for a hit-miss classification task

For a classification task the probability of a discriminant function choosing a false posi-

tive and the probability of choosing a true positive can be related to each other as points

on the receiver-operating characteristic (ROC) curve.

2.1.2 The ROC, LROC and EROC curves

It has been shown (Barrett & Myers, 2004) that the performance of an observer in a

binary decision task can be fully described by two fractions: the true positive fraction

(TPF) and the false positive fraction (FPF). Let N be the total number of decisions

made by an observer. Denote the number of true positive decisions by NTP and so on

for the other possible decisions such that N = NTP +NFP +NTN +NFN . If the number

of decisions made by the observer approaches infinity then the TPF and FPF can be

defined as:

TPF =

{
NTP

NTP +NFN

}
= lim

N→∞

[
number of TP decisions

actual number of positive cases

]
,

FPF =

{
NFP

NTN +NFP

}
= lim

N→∞

[
number of FP decisions

actual number of negative cases

]
.

(2.1)
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It is useful to consider the probability density functions of the scalar test statistic, t,

under the hypotheses H0 and H1, i.e. pr(t|H0) and pr(t|H1). From these probability

density functions the TPF and FPF as a function of some threshold tc can be formally

defined:

TPF (tc) =

∫ +∞

tc

pr(t|H1)dt,

FPF (tc) =

∫ +∞

tc

pr(t|H0)dt.

(2.2)

By varying the decision threshold, tc, a plot showing the relationship between the TPF

and the FPF can be mapped out. This plot known as the receiver operating characteristic

curve is shown in figure (2.2).

0 FPF

TPF

1

11/3 2/3

1/3

2/3

Figure 2.2: A sample ROC curve.

The area under the ROC curve (AUC) can be used as a figure of merit on the performance

of the observer. The AUC is an indication of how well the densities pr(t|H0) and pr(t|H1)

are separated from each other. The AUC can be defined in terms of the TPF and FPF

as the decision threshold is varied:

AUC = −
∫ +∞

−∞
TPF (tc)

dFPF (tc)

dtc
dtc. (2.3)

When the densities pr(t|H0) and pr(t|H1) are well separated, see figure(2.3(a)), the AUC

will be close to 1. However when the densities almost overlap the probability of making
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a correct decision will almost equal the probability of making an incorrect decision and

so the AUC will be close to 0.5, see figure(2.3(b)).

← pr(t|H1)pr(t|H0) →

(a) Well Separated Test Statistic Density Functions

← pr(t|H1)pr(t|H0) →

(b) Poorly Separated Test Statistic Density Functions

Figure 2.3: Test statistic density functions for a well performing decision making
system (a) and a poorly performing system (b).

A classification task can be combined with an estimation task in the decision making

process. An example would be faint companion detection where the location of the

companion is unknown. In this case the observer will also return an extra parameter

which represents an estimate on the location of the signal. The TPF is now the addition

of the probability of correctly classifying an image and correctly localising the signal of

the companion to within a given tolerance. A plot of the TPF vs. FPF for a detection-

localisation task is referred to as a localisation ROC (LROC) curve (Barrett & Myers,

2004; Caucci et al., 2007; Khurd & Gindo, 2005). The LROC curve can be generalised

into a detection-estimation task (Clarkson, 2007). For example an observer could be

tasked with detecting a faint companion and estimating the position and intensity of

the signal in an image. The plot of the TPF vs. FPF is now referred to as an estimation
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ROC (EROC) curve. The binary correct detection-localisation function, which is used in

LROC analysis, is replaced by a general utility function which measures the usefulness

of a parameter estimate. The AUC is still used as the figure of merit for the LROC and

EROC curves.

2.2 The Ideal Observer

The AUC has been defined as the figure of merit for classification-estimation tasks

and provides a metric for the optimisation of the performance of the the observer used

to carry out these tasks. For all discrimination tasks an ideal observer is that which

maximises the AUC for a given task. It can be shown that the optimal discriminant

function is the likelihood ratio (Barrett & Myers, 2004):

Λ(g) =
pr(g|H1)

pr(g|H0)
, (2.4)

or its logarithm λ(g) = ln[Λ(g)] (Barrett et al., 1998). To compute the likelihood ratio

the probability density functions under both hypotheses need to be known and this

requires descriptions of the objects to be classified-estimated and complete information

regarding the data measurement processes and full knowledge of the statistics of the

noise in the data.

2.3 The Hotelling Observer

In practice the likelihood ratio cannot always be calculated. It is then desirable to use a

linear observer which also maximises the area under the ROC curve and takes the form:

t(g) = wtg, (2.5)

where g is the data and w is a template vector sought after such that it will maximise

t(g) and hence the AUC. Maximising the AUC is equivalent to maximising the class

separation of pr(t|H0) and pr(t|H1) as shown in figure (2.3). It is convenient to introduce

the nomenclature corresponding to faint companion detection and parameter estimation.

It is assumed that the AO corrected astronomical data has already been pre-processed,

so that it is flat-fielded and background-subtracted. Also, if the observation consists of
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multiple images, we assume that these frames have been re-centred and co-added. The

observer is now supplied with a pre-processed long exposure image.

Let g0 denote the mean image when a companion is absent where the over-bar refers

to the mean of the data averaged over the measurement noise. When a companion is

present, at the position rpl, the mean image is written as g1,rpl
. The true signal of the

companion is then given by:

srpl = g1,rpl
− g0. (2.6)

In real life situations astronomical images are contaminated by several types of noise,

such as: cosmic ray hits, bad pixels on the detector, readout noise from the detector and

Poisson noise due to the stochastic nature of photon detection. Bad pixels and cosmic

ray hits can usually be compensated for by applying a median filter to the data (Artigau

et al., 2008). The noisy images can be modelled under the two hypotheses as:

H0 : g = g0 + n, H1,rpl : g = g0 + srpl︸ ︷︷ ︸
g1,rpl

+ n. (2.7)

The noise n is composed of Gaussian noise from the detector readout and Poisson noise

arising from the detection of the incident radiation.

In the following we assume that the data with dimensions of n× n has been rearranged

into column vectors of size M × 1, where M = n × n. This rearrangement makes it

possible to use normal matrix operations on the data. The images averaged over noise

can now be expressed as:

g0 = A∗h(r∗)︸ ︷︷ ︸
star image

+ b︸︷︷︸
background

, g1,rpl
= A∗h(r∗)︸ ︷︷ ︸

star image

+ Aplh(rpl)︸ ︷︷ ︸
companion image

+ b︸︷︷︸
background

, (2.8)

where A∗ is the intensity of the bright star located at position r∗, Apl is the intensity

of the companion located at rpl, h(r) is the PSF located at r and b is the background

intensity.

While the intensity in AO-corrected short exposures can be approximated by a modified

Rician distribution (Cagigal & Canales, 1998; Aime & Soummer, 2004), the sum of these

intensities, over many exposures, can be approximated by a Gaussian distribution by

the central limit theorem. Therefore we expect the intensity statistics in an ensemble of
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long-exposure images to obey Gaussian statistics. I have also assumed that additional

sources of noise such as quasi-static speckle noise have also been suppressed. We will

see in Chapters (5, 6) how this may be attempted. Under the Gaussian assumption the

densities pr(g|H0) and pr(g|H1,rpl) can then be expressed as (Helstrom, 1968; Caucci

et al., 2007)

pr(g|H0) =

[
1

(2π)Mdet(Kg)

]1/2

× exp
[
−1

2
(g − g0)TK−1

g (g − g0)

]
, (2.9)

pr(g|H1,rpl) =

[
1

(2π)Mdet(Kg)

]1/2

× exp
[
−1

2
(g − g0 − srpl)TK−1

g (g − g0 − srpl)
]
.

(2.10)

Where det denotes the determinant of a given matrix, T denotes transpose, pr(g|H) is

the conditional probability density function of the data under the hypothesis H, either

H0 or H1,rpl , and Kg is the covariance matrix of the data, of size M ×M .

The noise in the data is assumed to be uncorrelated i.e. the noise in one pixel is

independent of the noise in other pixels. This is a reasonable assumption for the case

of detector and photon noise. With the assumption of uncorrelated noise, the data

covariance matrix, Kg, is diagonal, with elements given by (Caucci et al., 2007):

[Kg]m,m′ = [A∗hm(r∗) + bm + σ2
m]δm,m′ (2.11)

where δm,m′ is the Kronecker delta function, the detector noise has been assumed to be

Gaussian with variance σ2
m, the background follows Poisson statistics and m represents

the pixel index. This expression for Kg ignores the small addition to the covariance

matrix due to the Poisson noise from the companion.

If the companion location, rpl, is unknown, the ideal observer can be applied at a set of

test locations R and is referred to as the ideal scanning observer (Caucci et al., 2007).

This observer has a maximum test statistic at the true companion location, rpl ∈ R.

This means that the algorithm can be used to estimate differential astrometry of a

companion. The ideal scanning observer takes on the form:

Λ(g) = max
rpl∈R

Λ(g|rpl) = max
rpl∈R

pr(g|H1,rpl)

pr(g|H0)
. (2.12)
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With the estimation of rpl then computed as:

r̃pl = arg max
rpl∈R

Λ(g|rpl). (2.13)

Under the assumption of Gaussian noise (equations (2.9) and (2.10)) and taking the

logarithm of Λ(g) we obtain the log-likelihood ratio, λ(g) = ln[Λ(g)], given by:

λ(g) = max
rpl∈R

[
1

2
(g − g0)TK−1

g (g − g0)− 1

2
(g − g0 − srpl)TK−1

g (g − g0 − srpl)
]
,

= max
rpl∈R

−1

2

[
−gTK−1

g (g − g0) + gT0 K
−1
g (g − g0) + gTK−1

g (g − g0 − srpl)

− gT0 K−1
g (g − g0 − srpl)− srplK−1

g (g − g0 − srpl)
]
.

(2.14)

If K−1
g is diagonal, as we assumed earlier (equation (2.11)) then the log-likelihood ratio

becomes:

λ(g) = max
rpl∈R

−1

2

[
−gTK−1

g srpl + gT0 K
−1
g srpl − sTrplK

−1
g g + sTrplK

−1
g g0 + sTrplK

−1
g srpl

]

= max
rpl∈R

−1

2

[
2sTrplK

−1
g (g0 − g) + sTrplK

−1
g srpl

]
,

= max
rpl∈R

[
sTrplK

−1
g (g − g0 −

1

2
srpl)

]
.

(2.15)

The quantity that appears in square brackets in equation (2.15) is linear in g. The

log-likelihood ratio, λ(g), is therefore the ideal linear observer. Barrett et al. (2006)

shows that the Hotelling observer, t(g), is equal to the log-likelihood ratio if the data is

normally distributed with equal covariances under both hypotheses i.e. Kg|H1
= Kg|H0

.

In equation (2.15) the signal of the bright parent star and half of the predicted companion

signal is removed from the data. The subtraction of half of the predicted companion

signal does not affect the location of the maximum of λ(g). The result is prewhitened, i.e.

divided by the data covariance matrix Kg. The output of this operation is then processed

with a matched filter using the expected companion signal located at the expected

companion position, rpl. Data prewhitening and matched filtering is not unique to

the Hotelling observer; the generalised Wiener-Helstrom filter (Helstrom, 1968; Barrett
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et al., 1995; Barrett et al., 2006) also uses second order statistics of the object, and

forms its output by a linear operation on prewhitened data. The Wiener-Helstrom filter

is biased towards a known a priori mean, when the number of unknown parameters is

large this biasing can be very useful, i.e. the produced solution is a plausible one.

Following on from equation (2.15) and recalling from equation (2.11) the expression for

Kg = A∗hm(r∗) + bm + σ2
m and srpl = g

1,rpl
− g0 = Aplhm(rpl), an expression for the

scanning Hotelling observer, tHot(g), can be written in the form:

tHot(g) =
M∑

m=1

Aplhm(rpl)

A∗hm(r∗) + bm + σ2
m

[
gm − g0,m −

1

2
Aplhm(rpl)

]
(2.16)

The estimation of the companion location, rpl, is then computed as:

r̃pl = arg max
rpl∈R

[tHot(g)] (2.17)

In the following, equation (2.17) is referred to as the Spatial Scanning Hotelling Esti-

mator (SSHE). The operator of the algorithm computes a set of scalars on the data g.

These scalars are functions of the unknown position of the companion rpl. The maxi-

mum of this set of scalars is taken as the value of the Hotelling observer, tHot(g). In

the above derivation of the SSHE it was assumed that the intensity of the companion

Apl was known. In general for faint companions this will not be the case. However the

Hotelling method can be generalised to estimate both the position and intensity of a faint

companion at the same time. The maximum of equation (2.16) is now dependent upon

the Cartesian product of the two unknown parameters of the companion signal: rpl and

Apl. Hence for every test companion location in R a set of test companion intensities is

defined: A. Scanning over this three dimensional test space results in a maximum value

of the Hotelling test statistic with a corresponding estimate of the companion position

and intensity. However this is a computationally intensive approach.

The approach that follows relies on the fact that for every companion location estimate

there exists a companion intensity estimate which maximises the Hotelling test statistic

for that location, given that tHot(g) is quadratic in Apl. Recalling the log-likelihood

ratio, equation (2.15), an estimate of the intensity of the companion, Apl, for a defined

set of test intensities A becomes:

Ãpl = arg max
Apl∈A

[
sTrplK

−1
g (g − g0)− 1

2
sTrplK

−1
g srpl

]
. (2.18)
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Equation (2.18) assumed rpl is known. The log-likelihood ratio is maximised by taking

the partial derivative of equation (2.18) with respect to Apl and setting it equal to zero:

∂tHot(g)

∂Apl
= h(rpl)

TK−1
g (g − g0)−Aplh(rpl)

TK−1
g hm(rpl) = 0, (2.19)

where use was made of the fact that srpl = Aplh(rpl). This leads to the following

estimator for Apl:

Ãpl =
h(rpl)

TK−1
g (g − g0)

h(rpl)TK
−1
g h(rpl)

. (2.20)

Recalling the structure of the data covariance matrix Kg this estimator becomes:

Ãpl =

∑M
m=1(hm(rpl)/(A∗hm(r∗) + bm + σ2

m))[gm − g0,m]
∑M

m=1 hm(rpl)2/(A∗hm(r∗) + bm + σ2
m)

, (2.21)

where m is the pixel index of the image. We refer to equation (2.21) as the Optimal

Hotelling Estimator (OHE). The estimation of the companion location is computed using

the SSHE whilst substituting the estimation of Apl from the OHE into the SSHE for

each test location. The result is differential astrometry and photometry of an observed

companion. Various methods of implementing this algorithm are explored in section

(3.3).

The mathematical form of the OHE can be compared to that of the Iterative Blind

Deconvolution estimator for intensity (Barnaby et al., 2000). This algorithm uses a

conjugate gradient minimisation to minimise the error metric:

Ef =
∑

m

[
gm − (õm ∗ h̃m)

]2
. (2.22)

Where o represents the object (in the focal plane), h is an estimate of the PSF and g is

the observed data. The object, o, can be divided into two signals (equation (4.1)) , the

bright star and the companion signal:

Ef =
∑

m

[
gm −A∗δ(x− x∗, y − y∗) ∗ h̃m −Aplδ(x− xpl, y − ypl) ∗ h̃m

]2
. (2.23)
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As above, instead of using a gradient minimisation, an expression for this minimum can

be found by taking the partial derivative of Ef with respect to Apl and setting it equal

to zero.

∂Ef
∂Apl

= 2
∑

m

[
gm−A∗δ(x−x∗, y−y∗)∗h̃m−Aplδ(x−xpl, y−ypl)∗h̃m

][
δ(x−xpl, y−ypl)∗h̃m

]
= 0.

(2.24)

This leads to the estimation of Apl:

Ãpl =
∑

m

[gm −A∗(δ(x− x∗, y − y∗)) ∗ h̃m][δ(x− xpl, y − ypl) ∗ h̃m]

[δ(x− xpl, y − ypl) ∗ h̃m][δ(x− xpl, y − ypl) ∗ h̃m]
(2.25)

It is instructive to compare equations (2.21) and (2.25). The difference is that the OHE

takes into account the variance of the noise in the data i.e. the OHE prewhitens the

data. The importance of prewhitening will be shown in section (4.3).



CHAPTER 3

APPLICATION OF THE HOTELLING OBSERVER

In this chapter, we report upon the details of simulation work carried out to validate the

Hotelling approach. The data simulation package PAOLA which was used to simulate

long exposure AO corrected images is described. The second part of the chapter concen-

trates on faint companion detection at a known location, where the Hotelling observer

is compared to other state of the art linear observers. The third section carries out

experiments involving faint companion detection at an unknown location. For this task

several techniques are introduced to calculate the Hotelling discriminant. Results are

presented where the presence, location and intensity of a faint companion are required

to be determined. Finally the Hotelling observer is applied to the task of detecting and

locating Shack-Hartmann spot images in the presence of strong turbulence.

3.1 Data Simulation with PAOLA

PAOLA (Performance of Adaptive Optics for Large or Little Apertures) (Jolissaint et al.,

2006) is an IDL-based analytic end-to-end AO simulation code which provides fast first

order system performance estimates. This approach is based upon the derivation of

Rigaut et al. (1998) which shows that a good approximation of the AO corrected long

exposure optical transfer function can be found by modelling the AO corrected phase

spatial power spectrum. The AO model is a Shack-Hartmann wavefront sensor with a

least-square type reconstructor. The compensated phase is modelled by the addition of

five error terms:

32
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1. Fitting Error due to the deformable mirror being unable to compensate the

incoming phase above its spatial cut-off frequency.

2. Anisoplanatic Error arising from the system attempting to compensate an in-

coming phase at a different angle from the analysed phase.

3. Servo Lag Error due to the time delay in applying the estimated wavefront

correction to the incoming phase.

4. Spatial Aliasing Error in the wavefront sensor from phase spatial frequencies

above the wavefront sensor cut-off frequency being sensed as low spatial frequen-

cies.

5. Additive Noise in the wavefront sensor from detector readout and photon noise.

Analytical expressions are used to obtain an estimate of the residual phase power spec-

trum, Sϕc , where ϕc denotes the compensated phase the phase structure function, Dφ

can be expressed as:

Dϕ(ρ) = 2

∫ ∫ ∞

−∞
Sϕc(k) [1− cos (2πik.ρ)] dk, (3.1)

where ρ is the displacement vector, (x, y), between two points in the phase and k is the

spatial frequency vector. The OTF of the system can hence be written as:

OTF (ρ/λ) = T (ρ/λ).exp

[
−1

2
Dϕ(ρ/λ)

]
, (3.2)

where λ is the imaging wavelength and T is the OTF of the telescope in the absence of

turbulence. The long exposure PSF can be estimated by the inverse Fourier transform

of the OTF.

The PAOLA package was chosen to simulate the data primarily due to its rapid execution

time i.e. a few minutes for an eight metre class telescope compared to several hours for

a Monte Carlo type algorithm (Jolissaint et al., 2006). The parameters of the AO

system on the Lick Observatory 3m Shane telescope (Bauman et al., 1999; Fitzgerald &

Graham, 2006; Lloyd et al., 2000) were used to simulate the data. In the simulations the

deformable mirror of the AO system had 5 actuators across its diameter. The simulations

were carried out in the K band (2.2µm) where the primary star was modelled as a mk = 5

star and the natural guide star as a bolometric magnitude 10 star. The sky brightness

was set at 19 magnitudes arcsec−2. The atmosphere was modelled as consisting of three

turbulent layers at altitudes of 1, 5 and 10 km, with wind speeds of 10, 15 and 25 ms−1
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Figure 3.1: Image of the simulated Lick pupil (a) and a log-scale image of the corre-
sponding estimated PSF from PAOLA (b).

respectively. The seeing angle at 0.55µm was 0.8 arcsec. The optical transmission of

the system in the K-band was set at 13%, the science filter bandpass at 0.32µm, the

quantum efficiency of the science camera at 67%, the gain of the science camera at 10

and an exposure time of 22ms. These parameters correspond to the imaging campaign

carried out at the Lick Observatory (Gladysz et al., 2006). Figure (3.1(a)) shows the

modelled pupil of the Lick system and a corresponding simulated PSF, figure (3.1(b)).

3.2 Robustness of the Hotelling Observer

This section reports on applying the Hotelling Observer on a variety of different simu-

lated data to perform a detection task. The area under the receiver operating charac-

teristic curve has been used as the figure of merit for all observers in the determination

of task performance. For the following experiments the observers were given complete

knowledge of the signal to be detected, i.e. the position and intensity of the compan-

ion, the point spread function of the simulated AO system and the image background

intensity and variance. This special case of signal detection is referred to as the “signal

known exactly, point spread function known exactly and background known exactly”

(SKE/PKE/BKE) case and will be used to assess the performance of the Hotelling

observer.
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Figure 3.2: The white circle denotes the location of pixels which were used to estimate
the background level and the variance of the detector readout noise.

Only the presence of the companion is left unknown to the observer. This case may not

be as trivial as it first appears.

The intensity of the central star can be estimated using the known PSF in a least-squares

algorithm. The variance of the detector readout (plus background) can be taken as the

variance within an annulus of pixel values far away from the central star such that it

is assumed the annulus only contains background information (Burke et al., 2009). For

an example see figure(3.2) where variance of the detector readout, plus background, is

estimated for a simulated Lick PSF. It is possible to estimate the long exposure PSF

by several means: observing a reference star, reconstruction from wavefront sensor data

(Véran et al., 1997), reconstruction from Angular Differential Imaging data (Marois

et al., 2006), Spectral Differential Imaging data (Racine et al., 1999) or from focal plane

data (Gonsalves, 1982), also see Chapter (6).

Recalling the notation from section (2.3) we denote: A∗ as the intensity of the bright

star located at position r∗, Apl as the intensity of the companion located at rpl, h(r)

as the simulated AO corrected PSF located at position r, b is the background intensity

with a variance σ2 and m is the pixel index. The long exposure images averaged over

measurement noise are modelled as:

g0 = A∗h(r∗)︸ ︷︷ ︸
star image

+ b︸︷︷︸
background

, g1,rpl
= A∗h(r∗)︸ ︷︷ ︸

star image

+ Aplh(rpl)︸ ︷︷ ︸
companion image

+ b︸︷︷︸
background

. (3.3)
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It should be noted that when rpl and g0 are fixed, the terms sTrplK
−1
g g0 and sTrplK

−1
g srpl in

equation (2.15) do not vary with g and can therefore be treated as constants. Hence the

Hotelling Observer for faint companion detection at a known location can be expressed

as:

tHot(g|rpl) =
M∑

m=1

Aplhm(rpl)

A∗hm(r∗) + bm + σ2
m

gm. (3.4)

It needs to be stressed that for this SKE/PKE/BKE example an exact estimate of Apl

is not needed. This is because tHot(g|rpl) scales with Apl and therefore this quantity can

be factored into the threshold which the Hotelling Observer will be compared to.

As the Hotelling observer is a linear observer it was desirable to compare its performance

to other linear observers. As the PSF and location of the companion signal are known, a

straight matched-filter (Barrett & Myers, 2004; Poyneer, 2003) type observer was chosen

as an initial comparison. The matched-filter employed in this study is simply the scalar

product of the proposed companion signal i.e. a template vector and the data. This

product can be thought of as a correlation (Barrett & Myers, 2004) and hence can be

computed using Fourier methods. Given the PSF located at the companion position

and the intensity of the companion the matched-filter observer is given by:

tMF (g|rpl) =
M∑

m

Aplhm(rpl)︸ ︷︷ ︸
template vector

gm. (3.5)

The formulation of this observer is very similar to the Hotelling observer. However in this

observer the data vector has not been prewhitened. The performance of this observer

is primarily influenced by how closely the PSF in the template vector matches the PSF

of the data. This matched-filter is a convenient observer to compare the Hotelling

observer to as no additional parameters beyond those required for the computation of

the Hotelling observer are needed.

The second linear observer chosen is formulated around subtracting the signal of the

primary star from the data and summing over a window. If k is the size of the window

centred at rpl, then the set of pixels inside the window are given as:

N(rpl, k) ∈ {1, . . . ,M} , (3.6)

where the window is k × k square. Having defined the window the star-subtraction

observer can be defined as:
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tsub(g|rpl) =
∑

m∈N(rpl,k)

[gm − bm −A∗hm(r∗)] . (3.7)

Two sets of experiments will be reported upon below. The first set of experiments

investigates the relationship between the AUC of the three observers for a detection

task at a known location when the parameters of the data: Apl, rpl, b and σ are varied.

How the AUC changed with the level of AO compensation was also investigated. The

second set of experiments represent the first step away from the pure SKE/PKE/BKE

scenario. In these experiments the observers are supplied with mismatched parameters

for the data i.e. mismatched values for: Apl, rpl, b, σ and the level of AO correction.

These tests will show how sensitive the Hotelling observer is to the estimates of these

parameters.

3.2.1 Varying Companion Brightness

Adaptive Optics corrected images of a Lick-type system of size 64 × 64 pixels, with a

pixel size of 76 mas, were simulated using PAOLA. The Hotelling, matched-filter and

star subtraction observers were used to carry out a detection task where the data had

the following parameters:

• A∗ = 9× 105e−(total flux), 1× 105e−(peak flux), mk = 5, τ = 22 ms

• bm = 2× 10−2e−, i.e. 19 magnitudes in the K band per arcsecond,

• σm = 5e−,

• rpl = 5 pixels or 380 mas from the primary star, diffraction limit λ/D = 156mas

• Apl = 1→ 200e− i.e. 15→ 9 magnitudes fainter than the primary,

• k = 3 pixels,

where e− are photoelectrons and m is the pixel index. For each value of the companion

brightness, 300 noisy images, i.e. Poisson and Gaussian noise was added, with and

without a companion present were simulated. An ROC curve was then computed for

each observer and the corresponding AUC was determined. As the companion brightness

was varied a curve was mapped out for each observer on the Apl-AUC plane. This

experiment was repeated 10 times, the average Apl-AUC curves are presented in figure

(3.3) along with the standard deviation of the AUC for some values of Apl.
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Figure 3.3: Plot of the Apl-AUC plane for the Hotelling observer, simple matched
filter and star subtraction observers.

The result of the Apl− AUC mapping, figure (3.3), shows that the Hotelling observer

and the simple matched filter have very similar performances. However the difference

in the performance of the observers may become more noticeable if the data covariance

matrix is non-diagonal.

As can be seen from equation (3.4) and equation (3.5) the test statistics of the Hotelling

observer and the simple matched filter scale with Apl. This scaling effect appears to

result in a linear relationship between the AUC and Apl for these observers. The change

in the AUC as a function of the companion brightness was modelled for the Hotelling

observer using a linear interpolation, see figure (3.4). The correlation between the data

and the result of the fit is very good with a correlation coefficient of 0.997. This result

confirms the linearity of the scaling effect of the companion brightness on the AUC.

3.2.2 Increasing Companion Separation

After the primary star companion intensity ratio, the separation between the primary

star and the companion is the next critical parameter to a faint companion detection

task. In this experiment the data was simulated as in section (3.2.1). However the

companion brightness was set at Apl = 220e− and the companion separation increased

from rpl = 0 → 10 pixels. For each companion position, 300 noisy images with and

without a companion present were simulated. An ROC curve was then computed for each
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Figure 3.4: Investigation of the linear relationship between the companion brightness
and the AUC for the Hotelling observer.

observer and the corresponding AUC was determined. As the companion separation was

varied a curve was mapped out for each observer on the rpl-AUC plane. This experiment

was repeated 10 times, the average rpl-AUC curves are presented in figure (3.5) along

with the standard deviation of the AUC for some values of rpl.

Figure (3.5) shows that the Hotelling observer outperforms the simple matched filter

and star subtraction observers when the companion is close to the central star. However

the Hotelling and simple matched filter observers perform almost identically far away

from the primary star. This result stems from the fact that when the data covariance

matrix is smooth i.e. far away from the central star, the Hotelling and simple matched

filter observers will perform similarly.

3.2.3 Increased background intensity and variance of the detector

readout noise

The importance of the background level and its variance on the Hotelling, matched-filter

and star subtraction observers was investigated. In both of these experiments the data

was simulated as in section (3.2.1), with the companion separation set to rpl = 5 pixels

and the companion intensity set to Apl = 220e−.
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Figure 3.5: Plot of the rpl-AUC plane for the Hotelling observer, simple matched
filter and star subtraction observers.

Increasing the intensity of the uniform background, bm, should in effect increase the

level of Poisson noise. In the first test the background level was increased from bm =

0 → 100e− (peak value). For each value of bm, 300 noisy images with and without a

companion present were simulated. An ROC curve was then computed for each observer

and the corresponding AUC was determined. As the background intensity was varied

a curve was mapped out for each observer on the bm-AUC plane. This experiment was

repeated 10 times, the average bm-AUC curves are presented in figure (3.6(a)) along

with the standard deviation of the AUC for some values of bm. The Hotelling observer

outperforms the other two linear observers for all levels of the background tested here.

In a second experiment the variance of the detector readout noise was increased. The

readout noise variance was increased from σ2
m = 0 → 20e−

2
. For each value of σ2

m, 300

noisy images with and without a companion present were simulated. An ROC curve

was then computed for each observer and the corresponding AUC was determined. As

the readout noise variance was varied a curve was mapped out for each observer on the

σ2
m-AUC plane. This experiment was repeated 10 times, the average σ2

m-AUC curves

are presented in figure (3.6(b)) along with the standard deviation of the AUC for some

values of σ2
m. The Hotelling observer outperforms the other two linear observers for all

levels of the readout noise variance tested here.

These experiments demonstrate the robustness of the Hotelling observer and simple

matched filter to a wide range of background intensity levels and detector readout noise
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(a) Plot of the bm-AUC plane for the three linear ob-
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Figure 3.6: AUC planes for varying the background level and variance.

variances.

3.2.4 Varying Seeing Conditions

Over the course of an observation run the astronomical seeing angle will change and

this leads to a varying performance in the adaptive optics system of an astronomical

telescope. To study this effect PAOLA was utilised to simulate PSFs with Strehl ratios

from 0.1→ 0.97, where Strehl ratio was used as a metric for the quality of the PSF. In

this experiment the Strehl ratio of the data was varied by changing the value of the Fried

parameter over the range r0 = 0.07m → 1.01m. The Hotelling, matched-filter and star

subtraction observers were then used to carry out a detection task on this data cube to

examine the effect of AO correction on the AUC. For each value of Strehl ratio 300 noisy

images with and without a companion present were simulated. An ROC curve was then

computed for each observer and the corresponding AUC was determined. As the Strehl

ratio was varied a curve was mapped out for each observer on the Strehl ratio-AUC

plane. This experiment was repeated 10 times, the average Strehl ratio-AUC curves are

presented in figure (3.7) along with the standard deviation of the AUC for some values

of Strehl ratio.

The Hotelling observer outperforms the matched-filter and star subtraction observers,

in terms of the AUC, for all the seeing conditions considered in this test. As would be

expected there appears an almost linear increase in the AUC with Strehl ratio for the

three linear observers.
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Figure 3.7: Plot of the Strehl ratio-AUC plane for the Hotelling observer, simple
matched filter and star subtraction observers.

3.2.5 Mismatching the companion brightness in the template vector

The second set of experiments moves away from the pure SKE/PKE/BKE scenario.

The sensitivity of the observers to mismatches, or errors, in their template parameters is

investigated. In this experiment the dependence of the observers on the accuracy of the

estimate of the companion brightness was investigated. AO corrected images of the Lick

system, of size 64 × 64 pixels were again simulated using PAOLA as in section (3.2.1).

The Hotelling observer and matched-filter observer were tasked with detecting a faint

companion in data with the following parameters:

• A∗ = 9× 105e−, mk = 5, τ = 22 ms

• bm = 2× 10−2e− for all m, i.e. 19 magnitudes in the K band per arcsecond,

• σm = 5e− for all m,

• rpl = 5 pixels,

• AplTrue
= 220e−.

The star subtraction observer was not used in this test as this observer does not use

the companion intensity as a search parameter. The observers were supplied with a

range of test companion brightnesses AplTest
= 0 → 180e−. 300 noisy images with



Chapter 3: Application of the Hotelling Observer 43

and without a companion present were simulated. For each value of AplTest
an ROC

curve was computed for each observer and the corresponding AUC was determined. As

the companion brightness was varied a curve was mapped out for each observer on the

AplTest
-AUC plane. This experiment was repeated 10 times, the average AplTest

-AUC

curves are presented in figure (3.8) along with the standard deviation of the AUC for

some values of AplTest
.
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Figure 3.8: Plot of the AplTest
-AUC plane for the Hotelling and simple matched filter

observers.

The results of this AplTest
-AUC mapping correlate well to the results shown in figures

(3.3) and (3.4). That is the test statistics of the Hotelling and simple matched filter

observers are linear in Apl. Therefore an accurate estimate of Apl will not effect the

AUC in this case, the estimated value of Apl simply changes the threshold to which the

test statistics are compared to.

3.2.6 Mismatching the companion position in the template Vector

In the derivation of equation (3.4) it was assumed that the companion location, rpl, was

known and hence the value of the Hotelling observer for this formulation was not sensitive

to variations of this parameter. It was therefore worthwhile to test this assumption. In

this experiment the true value of the companion position was set at rplTrue
= 5 pixels.

The other parameters of the simulation, i.e. the star brightness, companion brightness

and background parameters, were kept the same as in the simulation in section (3.2.5).
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The Hotelling, matched-filter and star subtraction observers were supplied with a range

of test companion locations, rplTest
= 4.5 → 5.5 pixels. 300 noisy images with and

without a companion present were simulated. For each value of rplTest
an ROC curve

was computed for each observer and the corresponding AUC was determined. As the

companion location was varied a curve was mapped out for each observer on the rplTest
-

AUC plane. This experiment was repeated 10 times, the average rplTest
-AUC curves are

presented in figure (3.9) along with the standard deviation of the AUC for some values

of rplTest
.
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Figure 3.9: Plot of the rplTest
-AUC plane for the Hotelling observer, simple matched

filter and star subtraction observers.

Figure (3.9) shows that the Hotelling and matched-filter observers appear very sensitive

to an error in the companion position vector. This result confirms the assumption used

to derive equation (3.4). However it should be noted that when the companion position

is unknown the Hotelling observer reverts to the form expressed in equation (2.16) and

becomes dependent on the companion location.

3.2.7 Mismatching the background intensity

As the background intensity is often estimated from the data itself it is important

to understand how an error in this estimation would effect the detection of a faint

companion. In this test the true value of the of the background intensity was set at

bmTrue = 100e−. The Hotelling, matched-filter and star subtraction observers were then
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computed with a range of test intensities bmTest = 0→ 200e−. For each value of bmTest ,

300 noisy images with and without a companion present were simulated. An ROC curve

was then computed for each observer and the corresponding AUC was determined. As

the background intensity was varied a curve was mapped out for each observer on the

bmTest-AUC plane. This experiment was repeated 10 times, the average bmTest-AUC

curves are presented in figure (3.10) along with the standard deviation of the AUC for

some values of bmTest .
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Figure 3.10: Plot of the bmTest
-AUC plane for the Hotelling and simple matched filter

observers.

The results of this experiment show that for the SKE/PKE test case the Hotelling and

simple matched filter observers are insensitive to errors in the background estimation.

Furthermore it may be possible to jointly estimate the background intensity as part of

a multivariate estimation process as is done for the companion brightness.

3.2.8 Mismatching the variance of the detector readout

The variance of the detector readout, σ2
m, is an important parameter in the analytic

model of the data covariance matrix in the SKE/PKE/BKE test case. Hence an error in

the estimation of this parameter should reduce the performance of the Hotelling observer

for a detection task. To investigate this effect the variance of the detector readout was set

at σ2
mTrue

= 10e−. The Hotelling and simple matched-filter observers were then supplied

with a series of test variance estimates, σ2
mTest

= 0 → 20e−. For each value of σ2
mTest

,
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300 noisy images with and without a companion present were simulated. An ROC curve

was then computed for each observer and the corresponding AUC was determined. As

the detector readout variance was varied a curve was mapped out for each observer on

the σ2
mTest

-AUC plane. This experiment was repeated 10 times, the average σ2
mTest

-AUC

curves are presented in figure (3.11) along with the standard deviation of the AUC for

some values of σ2
mTest

.
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Figure 3.11: Plot of the σ2
mTest

-AUC plane for the Hotelling observer, simple matched
filter and star subtraction observers.

The results presented in figure (3.11) show that until the variance of the background

intensity is over estimated by a factor of ≈ 1.5 the Hotelling observer outperforms

the other tested observers. However after this cut-off the Hoteling and matched-filter

observers perform on par with each other.

3.2.9 Mismatching seeing conditions

The Hotelling observer acts as a spatial matched filter, therefore it was crucial to study

the dependence of the observer on the relation between the PSF of the data and the

PSF used in the template vector. In this experiment PAOLA was again used to simulate

PSFs. A set of PSFs were simulated with Strehl ratios of 0.1→ 0.97. In this experiment

the Strehl ratio of the data was varied by changing the value of the Fried parameter over

the range r0 = 0.07m→ 1.01m. The Strehl ratio of the PSF used to simulate the data

was selected as 0.52. The Hotelling, matched filter and star subtraction observers were



Chapter 3: Application of the Hotelling Observer 47

then calculated with a range of test PSFs with Strehl ratios ranging from 0.1→ 0.97. For

each test PSF 300 noisy images with and without a companion present were simulated.

An ROC curve was then computed for each observer and the corresponding AUC was

determined. As the Strehl ratio of the test PSF was varied a curve was mapped out for

each observer on the Strehl ratio mismatch - AUC plane. This experiment was repeated

10 times and the average Strehl ratio mismatch - AUC curve us presented in figure

(3.12) along with the standard deviation of the AUC for some values of the Strehl ratio

mismatch.
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Figure 3.12: Plot of the Strehl ratio mismatch-AUC plane for the three linear ob-
servers

The results presented in figure (3.12) show that for the SKE/BKE/PKE test case knowl-

edge of the exact profile of the PSF is not critical to the performance of the three

observers.

3.3 Localisation Receiver Operating Characteristic Curves

with simulated data

In real life situations the location of a faint companion in an image will in general

not be known a priori. Hence it is necessary to include a localisation step along with

the detection operation. In terms of the localisation ROC curve a detection task can
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be coupled with a localisation task such that the True Positive Fraction is now the

probability of correctly detecting a companion and correctly estimating the companion

location to within a given tolerence, ε. A plot of the True Positive Fraction of correction

decisions versus the False Positive Fraction of incorrect decisions is referred to as a

localisation receiver operating characteristic curve.

In the following experiments the performance of the Hotelling observer is assessed for the

tasks of companion detection, using equation (2.16) and companion localisation using

the Spatial Scanning Hotelling Estimator, equation (2.17):

tHot(g) = max
rpl∈R

M∑

m=1

Aplhm(rpl)

A∗hm(r∗) + bm + σ2
m

[
gm − g0,m −

1

2
Aplhm(rpl)

]
,

r̃pl = arg max
rpl∈R

[thot(g)].

(3.8)

It should be noted that at this stage only the companion position is unknown, the other

variables of the data, i.e. A∗, Apl, bm, PSF, and σm are assumed known.

Three possible approaches to computing the SSHE were investigated. The first technique

consists of defining a set of test locations, R, see figure (3.13(a)), such that the SSHE is

at a maximum at the companion position, see figure (3.13(b)).

The set of test locations is defined by:

xi,j = star position + ri ∗ sin(θj),

yi,j = star position + ri ∗ cos(θj),
(3.9)

where ri is the radius of the search grid and the number of angular grid positions θ at

each radius is given by θ(ri) = 60 + i. The drawbacks of this method are the heavy

computation time required to calculate the observer at R locations as R needs to be large

to cover an entire image and the spatial sampling of the test grid must be chosen by the

user. However with this type of search no prior knowledge of the companion location is

required. This approach to computing the values of the Hotelling test statistic will be

referred to as tHot grid.

The second method is based around estimating the maximum value of the SSHE func-

tion in and around the location of the companion using a gradient index maximisation

of the SSHE function. As the maximum value of the SSHE depends only upon the x & y
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(a) Test locations, R, for the SSHE

(b) Values of the SSHE for the test locations in figure 3.13(a)

Figure 3.13: Set of test locations, (top), for the SSHE and the corresponding observer
values, (bottom)
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Figure 3.14: The value of the SSHE in the region around the location of the com-
panion, the lines and dots show the maximisation test points.

position of the companion the Matlab function fmincon was used to estimate the max-

imum value of the function. The function fmincon carries out a bounded minimisation

where the bounds were defined as the edges of the image. Bounding the minimisation in

this manner prevents the wrap around of the template signal from one side of the image

to the other. For some initial value of the companion position, r0, the Matlab algorithm

iteratively searches for the maximum of the function. The maximum is deemed to be

reached when either the change in the position is less than 0.02 pixels or the change in

the value of the function is less than 10−6. A graphical representation of the values of the

SSHE in the region around a faint companion are presented in figure (3.14). Finding the

maximum of the SSHE using this technique reduces the number of test locations such

that the computation time for an image of pseudo-Lick data takes less than a second

compared to a minute using the search grid method. The drawback of this approach is

the requirement of an initial guess for the companion position, it was observed that this

estimated had to be within 3 pixels of the true location otherwise the observer would

wander off and converge on a bright residual speckle in the image. This approach to

computing the values of the Hotelling test statistic will be referred to as tHot ML.

The final method relies upon the fact that the scalar product of the template vector

and the mean subtracted data vector can be viewed as a cross-correlation and hence

can be estimated using Fourier transforms via the correlation theorem (Poyneer, 2003).
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The PSF shift which produces the least-square difference between the signal template,

w = Aplhmrpl, and the prewhitened mean subtracted data, K−1
g (g − g0,m) is the best

answer. Formally the mean-square error (MSE) of the prewhitened mean subtracted

data and the template at a displacement m, n is given by:

e[m,n] =
[ ∑∑

(w[i−m, j − n]−K−1
g (g − g0,m)[i, j])2

]

× [(N −m)(N − n)]−1,
(3.10)

where the images are of size N ×N pixels, the summations are for m ≥ 0, for i = m to

i = N −1, and for m ≥ 0, from i = 0 to i = N −1−m. These summations hold likewise

for n and j. Expanding (3.10) produces:

e[m,n] =
(∑∑

w[i−m, j − n]2 +K−1
g (g − g0,m)[i, j]2 − 2w[i−m, j − n]K−1

g (g − g0,m)[i, j]
)

× [(N −m)(N − n)]−1.

(3.11)

Poyneer (2003) notes that these two finite image signals can be thought of as single

periods of an infinite periodic signal. Therefore the limits of the summations are now

constant for all values of m and n:

e[m,n] =



N−1∑

i=0

N−1∑

j−0

w[i−m, j − n]2 +K−1
g (g − g0,m)[i, j]2 − 2w[i−m, j − n]K−1

g (g − g0,m)[i, j]


N2.

(3.12)

Recalling the periodicity of the image signals, as one end of the signal moves away it

will eventually wrap around from the other side. This results leads to a simplification of

equation (3.12) as the two energy terms remain constant. The MSE equation can now

be expressed as:

e[m,n] ∝ −
N∑

i=0

N∑

j=0

w[i−m, j − n]K−1
g (g − g0,m)[i, j], (3.13)
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which is the correlation of w and gresidual calculated with periodic convolution. This

correlation can be estimated efficiently in the Fourier domain by the use of the correla-

tion theorem. To estimate the maximum value of the correlation function a parabolic

interpolation is used to approximate the continuous correlation function and estimate its

maximum value. This approach has the advantages of computational speed and no need

of prior knowledge on the position of the companion. However this formulation does

appear to be more sensitive to noise when compared to the gradient index maximisation

or grid search approaches, see figure (3.15). This approach to computing the values of

the Hotelling test statistic will be referred to as tHot MF .
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(b) Fourier interpolated cross-correlation

Figure 3.15: The Hotelling observer computed using the grid search method left i.e.
tHot grid and the Hotelling observer interpolated using parabolic interpolation right i.e.

tHot MF .

The performance of the Hotelling observer and matched filter observer in terms of area

under the LROC curve (ALROC) was investigated. The three approaches outlined

above for computing the Hotelling observer with an unknown companion location were

used. The star subtraction observer was no longer used as it could only return integer

shifts for the position of the companion which was too gross a shift when compared to

the sub-pixel accuracy of the other methods. Artificial companions were simulated by

scaling and shifting PAOLA simulated PSFs with a Strehl ratio of 0.52. The observers

were tasked with detecting and locating a faint companion in data with the following

parameters:

• A∗ = 9× 105e−, mk = 5, τ = 22 ms,

• bm = 2× 10−2e−, i.e. 19 magnitudes in the K band per arcsecond,
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• σm = 5e−,

• rpl = 7 pixels,

• Apl = 1800e−, i.e. ∆mK = 6.75.

For each experiment 10 positions for the companion were tested in order to minimise the

bias from anisotropy in the PSF, see figure (3.16). In order to reduce computation time

the grid search method, tHot grid, was constrained to search only within a region close to

the location of the companion, with a spatial resolution of 0.1 pixels. The gradient index

maximisation method, tHot ML, was given a starting position guess of plus or minus two

pixels away from the maximum value of the mean subtracted data. For each companion

position in figure (3.16) 300 noisy images with and without a companion present were

simulated. An LROC curve was then computed for each observer and the corresponding

ALROC was determined. In this simulation, the tolerance for a correct estimate of the

companion position was set at ε = 0.15 pixels or 0.075 λ/D. The average ALROC

estimates along with their corresponding standard deviation are reported upon in table

(3.1).

Table 3.1: Comparison between methods of calculating
the Hotelling observer

Observer ALROC Std Dev ALROC

tHot grid(g|rpl) 084 0.1

tHot ML(g|rpl) 0.85 0.04

tHot MF (g|rpl) 0.8 0.03

tMF (g|rpl) 0.7 0.03

The results presented in table (3.1) demonstrate the limitations of the tested approaches.

The tHot ML(g|rpl) observer has the highest ALROC, at the cost of requiring an ap-

proximate companion location estimate. Therefore the rough companion location esti-

mate, calculated using the Fourier based method, tHot MF (g|rpl), could be input into

tHot ML(g|rpl) to yield a accurate companion location estimate without any use of prior

companion location information.

3.3.1 Increasing Companion-Star Separation

Corresponding to the experiment reported upon in section (3.2.2) the effect of changing

the companion radius upon the ALROC was investigated. Companions were placed at
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Figure 3.16: Ten artificial faint companion locations used to compute LROC curves
for the various observers.

integer pixels from rpl = 0 → 10 pixels. For each value of rpl, 300 noisy images with

and without a companion were simulated. An LROC curve was then computed for each

observer and the corresponding ALROC was determined. As the companion radius was

varied a curve was mapped out on the rpl - ALROC plane, see figure (3.17(a)).

The ALROC of all the observers increased with the star-companion separation distance.

The minimisation and grid search approaches performed best. This is not a surprising

result as this algorithm was always initiated within a few pixels of the true companion

position. The two Fourier approaches performed similarly when the companion was

close to the star. However the Hotelling observer outperformed the simple matched

filter beyond 6 pixels from the star.

It was also possible to analyse how the astrometric accuracy of the observers varied with

the star-companion separation distance, see figure (3.17(b)). As would be expected, the

astrometric accuracy of all the observers increased with the star-companion separation

distance. Beyond 6 pixels, or 2λ/D, the the observers performed very similarly. There-

fore the higher ALROC of the Hotelling observers, shown in figure (3.17(a)), must come

from a better companion detection scheme compared to the straight matched filter, i.e.

the prewhitening operation on the data must make a companion easier to detect above

the background noise.
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(a) Plot of the rpl-ALROC plane for the four linear observers.
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(b) Plot of the mean absolute error in astrometry for the four linear observers
as a function of the companion-star separation distance.

Figure 3.17: The area under the LROC curve as a function of the companion-star
separation was investigated along with the corresponding mean absolute error in the

estimation of the position of the companion.
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3.3.2 Mismatch in Seeing Conditions

In previous experiments we have considered detection and localisation tasks where the

PSF of the data was known exactly. In general this is an unrealistic assumption. We

now consider an example where knowledge of the exact PSF of the data is unknown

but the observer does have access to other reference PSFs acquired under different

observational conditions. The goal of this experiment is to determine the sensitivity

of the Hotelling observer to mismatches in the profile of the PSF used in the template

vector. The simulated PSFs from section (3.2.4) were used in the following way: the

data was simulated using a PSF with a SR of ≈ 52% while the other PSFs with Strehl

ratios ranging from 10%→ 97% were used by the Hotelling and matched filter observers

to scan the data in an attempt to detect and localise a faint companion added to the

data. In this experiment the Strehl ratio of the data was varied by changing the value

of the Fried parameter over the range r0 = 0.07m → 1.01m. For each test PSF used,

300 noisy images with and without a companion were simulated. An LROC curve was

then computed for each observer and the corresponding ALROC was determined. As

the SR of the test PSF was varied a curve was mapped out for each observer on the SR

mismatch - ALROC plane, see figure (3.18(a)).

Figure (3.18(a)) shows that all the scanning observers perform best with a properly

matched PSF. The performance of the grid search method is relatively high as it is

constrained to operate in the vicinity of the companion. In terms of astrometric accuracy,

all the scanning observers compute a minimum astrometric error when using a properly

matched PSF.

Figure (3.18(b)) shows that when a low Strehl ratio PSF is used to analyse the data the

scanning observers nearly always converge upon the residual central star signal. This

behaviour can be explained from the fact that the relatively sharp peak of the star

signal will not be removed when using a broad low Strehl ratio PSF to perform the star

subtraction operation. Accordingly when a high Strehl ratio PSF is used to subtract

the central star signal a broad halo remains after the subtraction process. The scanning

observers will then fixate upon this residual signal, this behaviour can be seen on the

positive side of figure (3.18(b)).
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(a) Plot of the SR mismatch - ALROC plane for the three linear observers
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(b) Plot of the mean absolute error in astrometry for the four linear observers
as a function of the Strehl ratio mismatch.

Figure 3.18: The area under the LROC curve as a function of the data and scanning
PSF Strehl ratio mismatch was investigated along with the corresponding mean absolute

error in the estimation of the position of the companion.
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3.4 Estimation Receiver Operating Characteristic Curves

with Simulated Data

Detection of a faint companion coupled with localisation and differential intensity es-

timation from simulated data is now reviewed. The True Positive Fraction is now the

probability of correctly detecting a companion and correctly estimating the parameters

of the companion to within a given tolerance, η. A plot of the True Positive Fraction of

correction decisions versus the False Positive Fraction of incorrect decisions is referred

to as an estimation receiver operating characteristic curve.

In section (2.3) it was shown that within the Hotelling framework there exists an unbiased

estimator for the intensity of a companion at a given location i.e. equation (2.21) referred

to as the Optimal Hotelling Estimator:

Ãpl =

∑M
m=1(hm(rpl)/(A∗hm(r∗) + bm + σ2

m))[gm − g0,m]
∑M

m=1 hm(rpl)2/(A∗hm(r∗) + bm + σ2
m)

, (3.14)

The performance of the OHE in terms of the area under the EROC curve (AEROC) was

contrasted against other possible approaches. For the ten companion locations in figure

(3.16) the observers listed in table (3.2) were tasked with detecting a faint companion

with a differential magnitude of 7 in a simulated AO corrected image and estimating its

position and intensity.

Table 3.2: Overview of the four observers used to detect and estimate the location
and intensity of a faint companion.

Observer Search Method

tHot grid(g|(apl, rpl)) contracting grid search in space and

intensity

tHot ML Analytic(g|(apl, rpl)) gradient index maximisation for position,

where the intensity is estimated at each

position using the OHE

tHot MF (g|(apl, rpl)) Fourier domain estimation of cross-correlation

on prewhitened data, using the OHE

to extract the intensity of the companion

tMF (g|(apl, rpl)) Fourier domain estimation of cross-correlation

with a deconvolution estimator

for intensity, i.e. equation (2.25)
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For each position 300 noisy images with and without a companion were simulated. An

EROC curve was then computed for each observer and the corresponding AEROC was

determined. In this PSF known exactly experiment the tolerance for a correct estimate

of the companion position was set at ε = 0.15 pixels and the tolerance on the estimate

of the intensity was set at κ = 0.1 magnitudes. A table of the average area under the

EROC curve is shown below, see table (3.3).

Table 3.3: Performance the four observers used to detect and
estimate the location and intensity of a faint companion.

Observer AEROC Std Dev AEROC

tHot grid(g|(apl, rpl)) 0.96 0.09

tHot ML(g|(apl, rpl)) 0.95 0.08

tHot MF (g|(apl, rpl)) 0.92 0.1

tMF (g|(apl, rpl)) 0.82 0.1

Similar to the results reported upon in table (3.1) when the PSF of the system is known

exactly the performance of the Hotelling observers in terms of the AEROC curve are

better then that of the straight matched-filter with a added deconvolution step. The

differences in the AEROC of the three Hotelling observer implementations are due to

the limitations in the various approaches. Even though the grid search method resulted

in a high AEROC, this approach is very computationally intensive. The Fourier domain

method fared worst of the Hotelling observers, this could be due to the unsuitability of

the parabolic function used to model the continuous cross-correlation. The minimisation

approached worked very well, however I observed that this method was very sensitive

to the choice of the initial starting location. A more realistic case will follow where by

the observers will be supplied with an inaccurate estimate of the PSF of the system.

3.4.1 Mismatch in Seeing Conditions

This experiment was designed to test the capability of the observers in table (3.2) at

detecting a faint companion and estimating the position and intensity of a companion

when the observers are supplied with a mismatched PSF. The simulated PSFs from

section (3.2.4) were used in the following way: the data was simulated using a PSF with

a SR of ≈ 52% while the other PSFs with Strehl ratios ranging from 10%→ 97% were

used by the Hotelling and matched filter observers to scan the data in an attempt to

detect, localise and estimate the intensity of a faint companion added to the data. For

each test PSF used, 300 noisy images with and without a companion were simulated.

An EROC curve was then computed for each observer and the corresponding AEROC
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was determined. As the SR of the test PSF was varied a curve was mapped out for each

observer on the SR mismatch - AEROC plane, see figure (3.19).
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Figure 3.19: Plot of the SR mismatch - AEROC plane for the three linear observers

The results presented in figure (3.19) suggest that the intensity estimation of a faint

companion is very sensitive to the correlation of PSF profile of the data and the scanning

template. These results also demonstrate the advantage of the prewhitening operation

of the Hotelling observer in flattening the residuals present in the mean subtracted data.

3.5 Detection and localisation of Shack-Hartmann spots

for Wavefront Sensing in Strong Turbulence

Adaptive optics systems can be used in free space optical communication applications

(Mackey, 2008) to reduce strong turbulence effects. Wavefront sensing is difficult in this

application due to the presence of scintillation. Zeros of intensity begin to appear due

to the presence of discontinuities in the phase, these discontinuous points in the phase,

known as optical vortices, occur naturally when a laser beam propagates through the

atmosphere (Roux, 1995).
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Laboratory experiments were carried out to detect optical vortices in conditions typical

to those experienced when a laser beam is propagated horizontally through the atmo-

sphere. A spatial light modulator was used to simulate the effect of strong turbulence

and a Shack-Hartmann wavefront sensor was utilised to measure the local tilts of the

wavefront surface. The Hotelling observer was applied to the Shack-Hartmann spot

images to detect and locate the spots in each sub-aperture. From the estimated spot

positions an estimate of the wavefront could be recovered and input into the branch

point potential method (Le Bigot & Wild, 1999; Wild & Le Bigot, 1999) to detect an

optical vortex and characterise it if present.

This section describes work carried out with Kevin Murphy of the Applied Optics Group,

who developed the experimental procedure for simulating optical vortices and measuring

the resultant wavefront with a Shack-Hartmann wavefront sensor. He also analysed the

outputs of the Hotelling observer with the branch point algorithm.

To test the application of the Hotelling observer to spot detection and localisation, ten

thousand noisy spot images (size 19× 19 pixels), with random spot locations, where the

intensity of each spot was Aspot = 103e−, were simulated using a Gaussian PSF profile

with a mean full-with-half-max of 2.5 pixels, varying normally with a standard deviation

of 0.25 pixels from image to image. The noise in each image consisted of Poisson noise

and normally distributed readout noise.

The Hotelling observer was applied to each spot image using the same Fourier domain

method as tMF (g|(apl, rpl)) but using the OHE to derive the brightness of the spot, this

method will be referred to as tHotMF (g|(apl, rpl)).

For each image the three matched-filter type algorithms as well as a classical centroiding

algorithm, were tasked with locating a spot in the image. The PSF profile used in the

template vectors was Gaussian in shape and had the same FWHM as the mean of the

data. The tHotMF showed the lowest mean error on the estimation of the position of

the spot (in pixels) followed by tMF and tHot ML Analytic, see table 3.4. The centroiding

algorithm faired worst; however, it should be noted that this centroiding algorithm was

not optimised as in Leroux & Dainty (2010). The centroiding algorithm used in the

comparison is a simple, non-iterative centroiding algorithm. It thresholds the data and

finds the centre of mass of a spot bigger than a certain size. The threshold is specific

to each lenslet as it is intensity weighted for each subaperture. If two or more spots are

detected above the threshold within one subaperture the brightest one is chosen as the

focused Shack-Hartmann spot.
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Observer Mean Error in Spot AUC SNR
Position Estimation (Pixels)

tHotMF 3.6× 10−4 0.82 136
tHot ML Analytic 5× 10−4 0.76 206

tMF 4× 10−4 0.80 81
Centroiding 1× 10−3 40

Table 3.4: Summary of testing the tHotMF , tHot ML Analytic, tMF and centroiding
algorithms on ten thousand simulated spot images. The HotMF showed the lowest
mean error in spot position estimation. This algorithm was also the most efficient spot

detector having the highest AUC of the four tested observers.
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Figure 3.20: Plots of the LROC curves for: tHotMF , tHot ML Analytic and tMF .

For the three matched-filter type observers it was possible to calculate a LROC curve

where the tolerance on the accuracy of the location estimate was set at ±ε = 4 ×
10−4 pixels.

Table (3.4) and figure (3.20) show that the cross-correlating Hotelling observer outper-

forms all the other tested algorithms in terms of mean centroiding error and in terms

of the number of correct spot detections, i.e. tHotMF has the highest area under the

LROC curve, AUC= 0.82. Furthermore the tHotMF has a much higher SNR compared

to the straight matched filter, tMF , and centroiding algorithm. Hence this increased

SNR coupled with a high performance in spot detection and localisation shows that the

tHotMF is capable of detecting spots with very low intensities which is critical when

analysing spot images in close proximity to a vortex. It should be noted that computing

the Hotelling observer in the image plane could be improved by interpolation of the PSF
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so that the resolution of the cross-correlation could be improved, as was done with the

Fourier plane method.

In the laboratory experiment an initial plane wave, seeded with a single optical vortex,

was simulated passing through 15 Kolmogorov phase screen realisations at a wavelength

of 633nm with a propagation distance of 2.8km. Figure (3.21(a)) shows an example of a

Kolmogorov phase screen used in the simulation. Propagation of the optical field between

phase screens was accomplished by multiplying the Fourier transform of the field by the

Fresnel transfer function (Johnston & Lane, 2000; Martin & Flatte, 1990). The final

degraded optical field was then encoded and applied to the spatial light modulator. The

resultant wavefront was then sampled by a 46 × 46 lenslet Shack-Hartmann wavefront

sensor.

Each Shack-Hartmann subaperture was defined by placing a 19 × 19 grid around each

spot image, see figure (3.21(b)). The data covariance matrix was assumed to only

compose noise terms and was expressed as:

Kg = Aspot ∗ hm(rspot) + σ2
m + bm, (3.15)

where Aspot is the intensity of the spot at position rspot, σ
2
m is the detector readout

variance for the mth pixel and bm is the expected background intensity at the mth pixel.

These quantities were estimated as in section (4.3). A PSF was estimated as the mean

of the spot images from the reference wavefront and the Hotelling observer was applied

to each spot image using the Fourier approach to estimate each spot location. For each

candidate spot location the Hotelling SNRt was used as the spot detection metric:

SNRt =
< t(g|H1) > − < t(g|H0) >√

1
2σ

2
t(g|H1) − 1

2σ
2
t(g|H0)

, (3.16)

where < · · · > denotes ensemble average and σ2
t(g|H1) and σ2

t(g|H0) are the variances of

t(g|H1) and t(g|H0). In this application t(g|H0) was estimated from the Hotelling test

statistics of a ring surrounding the edge of the spot image, an estimate of the PDF of

t(g|H0) was produced by taking the histogram of these test statistics, see figure (3.22).

This histogram shows a Gaussian distribution, as was expected. The Hotelling SNRt

can be related directly to the AUC (Barrett & Myers, 2004) via:

SNRt = 2erf−1(2AUC− 1), (3.17)
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(a) Example of Kolmorogov phase screen used to simulate optical vortices

(b) Array of aberrated Shack-Hartmann spots

Figure 3.21: Example of phase screen applied to the spatial light modulator to pro-
duce an optical vortex and the acquired Shack-Hartmann spot image.

where erf−1 is the inverse of the error function,

erf(x) = 2π−
1
2

∫ x

0
e−t

2
dt. (3.18)
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Figure 3.22: Histogram of the values of t(g|H0), sampled from a ring surrounding the
edge of a spot image, and the Gaussian fit to this histogram.

A Hotelling SNRt greater than 3, which equated to an AUC of 0.98, was selected as the

threshold for a correct spot detection. When applied to the array of spot images in figure

(3.21(b)) the Hotelling algorithm detected 2189 spots from 2200 analysed subapertures

in contrast to 1974 spots detected by centroiding alone.



CHAPTER 4

BINARY STAR PARAMETER ESTIMATION

This chapter compares the accuracy of the Hotelling observer to other commonly used

algorithms in astronomical photometry. The chosen algorithms are: StarFinder (Dio-

laiti et al., 2000) and Fitstars (ten Brummelaar et al., 2000). In section (4.1) a review

of the current state of the art methods in determining differential astrometry and pho-

tometry of faint sources is presented. This review is followed by a set of experiments

comparing the accuracy of the differential astrometry and photometry extracted using

the Hotelling observer, StarFinder and Fitstars algorithms. In section (4.3) the advan-

tages of prewhitening the image data is assessed using the peak-signal-to-noise ratio as

a metric. This chapter concludes with the application of the Hotelling observer and

StarFinder to a set of real observations of binary stars carried out at the Lick Observa-

tory.

4.1 Current State of the Art Methods

There are three main approaches to deriving photometry from stellar images; aperture

photometry, PSF fitting and deconvolution. The latter two techniques also extract

relative astrometry. These algorithms were developed to analyse non AO-corrected

images of crowded star fields. We will assume that they are applied to AO-corrected

images, with a field of view smaller than the isoplanatic angle i.e. negligible variation

in the PSF over the image.

Digital aperture photometry can be carried out using the APPHOT package (Davis,

1989) within the IRAF environment (Shames & Tody, 1986). The technique uses pixel

66
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integration over a user-defined aperture in the image. Knowledge of the PSF is not

required as PSF-fitting techniques are not used. This method works best on un-crowded

star fields where there is no overlap of light from nearby stars.

It is often the case however that images of close binary stars have overlapping profiles,

in which case aperture photometry is not suitable for extracting differential photometry.

Stetson (1987) was one of the first to propose using PSF-fitting for this problem. In

his PSF-fitting approach an analytic or empirical PSF is used together with a fitting

algorithm to match scaled-and-shifted copies of the PSF to the data. The photometric

accuracy of this method depends mostly on the accuracy of the PSF estimate. This

estimate can be obtained by describing the PSF analytically or numerically. The most

commonly used analytical PSFs are Gaussian, Lorentzian or Franz functions (Devaney,

1992). The analytical approach works best when the images are critically sampled

(Nyquist), or under-sampled (Stetson et al., 1990), with the empirical approach the

PSF is extracted directly from the observations. If there is a bright isolated star in an

image, then a sub-array containing this isolated star will provide an empirical model of

the PSF. This method is best implemented on over-sampled data (Stetson, 1992).

A combination of the above methods has been implemented in the DAOPHOT II soft-

ware package (Stetson, 1992). An analytical function is first fitted to the data for several

bright isolated stars, scaled copies of this profile are then subtracted from the original

data. Sub-arrays containing the residuals are extracted and averaged together. The

estimated PSF is then a combination of the analytical PSF and an interpolation on the

residuals. This method works best when the analytic function accounts for over 90% of

the profile shape within the “true” PSF.

Several approaches have also been developed to specifically extract relative astrometry

and photometry from AO corrected astronomical fields. These methods include those

presented by Mugnier et al. (1998); T. Fusco et al. (1999); Flicker & Rigaut (2005) and

Mugnier et al. (2004). These algorithms are based on stochastic approaches which make

use of prior knowledge about the science object and AO corrected PSF to perform a

myopic deconvolution.

4.1.1 StarFinder

A recent implementation of the PSF-fitting approach is the StarFinder package (Diolaiti

et al., 2000). The code, implemented in IDL, which has a graphical user interface, was

developed for the specific purpose of measuring relative photometry and astrometry in

AO-corrected stellar fields. The algorithm operates in two stages: initial PSF estimation

and iterative PSF fitting. In the first stage, bright isolated stars in the image are
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identified and background-subtracted. The resulting sub-images are then registered

with sub-pixel accuracy, normalised, and median-combined to produce the first PSF

estimate. A synthetic field, consisting of delta functions convolved with the PSF estimate

is then subtracted from the data. In the second stage the residual image is searched via

cross-correlation with the PSF template for additional sources. Images of the detected

secondary sources are then fitted with the PSF estimate. The result of this procedure

is relative astrometry and photometry, as well as an updated estimate of the PSF.

The StarFinder code terminates typically after 2− 3 iterations of its main fitting loop,

see figure 2 in Diolaiti et al. (2000), when the number of detected sources approaches a

constant value.

This analysis of stellar fields is similar to the Clean algorithm (Högbom, 1974) which

also represents the analysed image as a collection of point sources.

4.1.2 Iterative Blind Deconvolution

In some cases, no a priori estimate of the PSF is available and one may have to attempt

to estimate the PSF and object simultaneously. This situation is referred to as blind

deconvolution in the literature, a thorough review of the subject can be found in Pantin

et al. (2007) and Blanc-Féraud et al. (2010).

Lane (1992) proposed to derive relative astrometry and photometry by minimising an

error metric function E which imposes constraints in both Fourier and image spaces.

The minimisation technique he used was an unconstrained conjugate gradient approach

(Fletcher, 1987). In practice the algorithm produces a series of estimates of the object,

o, and the PSF, p, which have a decreasing value of the function E with each iteration.

The algorithm converges when a local minimum of E has been found.

This iterative blind deconvolution (IBD) framework was further refined by Jefferies &

Christou (1993). Their error metric function contained four contributions: as with

Lane’s approach an error metric in the image and Fourier spaces was included, as well

as an error metric for a band-limit constraint on the PSF and an error metric for the

Fourier modulus. The conjugate gradient routine from Press et al. (1986) was used to

minimise the combined error metric. They applied their IBD algorithm to a wide range

of astronomical images and detected a third component in the binary system 85 Pegasi.

Fitstars (ten Brummelaar et al., 2000) is an iterative blind deconvolution algorithm

specifically optimised for binary stars. The algorithm extracts differential photometry

and astrometry of two stellar components, as well as the PSF corresponding to the

observations. The object is assumed to consist of two δ functions. Hence if there are
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N = 2 number of stars in the field and the intensity of the ith star is Ai and its position

is (xi, yi) the object can be written as:

o(x, y) =
N∑

i=1

Aiδ(x− xi, y − yi), (4.1)

the image can then be expressed as the convolution of the object and the PSF:

i(x, y) = o(x, y) ∗ p(x, y). (4.2)

Using an initial guess for the PSF, this equation can be solved in a least squares sense

for the positions and magnitudes of the stars in the field. The sample PSF can be taken

from an image of a single star, or the result from a previous operation of Fitstars. Even

a relatively poor initial guess of the PSF will converge and produce similar results. The

PSF changes substantially between observations of different targets due to changes in

seeing and variations in AO performance on different targets. In order to compensate for

this, a new model of the PSF is extracted from the data itself using the fitted estimates

of the position and magnitude differences. An estimate of the PSF based on the star k

is:

pk(x, y) = i(x, y)−
N∑

j 6=k
(Ajδ(x− xj , y − yj) ∗ pold(x, y)) . (4.3)

An estimate of the PSF can be extracted for each star in the field and a new PSF is

formed by use of a weighted average over the PSF estimates (ten Brummelaar et al.,

1996):

pnew(x, y) =
1

∑N
j=1Aj

×
N∑

j=1

Ajpj(x, y) (4.4)

If the new values for the position and intensity of the binary star are not correct the

new deconvolved PSF will contain energy from both sources, resulting in a PSF estimate

with a large central peak and a smaller peak at the position of the second star. As initial

estimates for the position and intensity of both sources are never exact, this leaking of

energy can cause the PSF to become a binary itself (ten Brummelaar et al., 1996). To

avoid this problem for both the objects a mask is made based on a single star image.

This mask is set to one in the region of the jth star where the intensity of the star is
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much greater than zero. Beyond this region the mask has a Gaussian roll-off to zero.

Therefore each new PSF estimate is multiplied by this mask and then normalised:

∫
pnew(x, y)dxdy = 1. (4.5)

Equations (4.3), (4.4) and (4.5) are iterated until the root-mean-square (RMS) of the

residual error of the fit of the model to the data changes less than 1%. Fitstars has been

used with adaptive optics data sets from several telescopes with results which compared

well to other methods (Horch et al., 2001; Pluzhnik, 2005).

4.2 Comparison of the Hotelling observer to Fitstars and

Starfinder using AO corrected Lick data.

4.2.1 Observations

In order to compare the photometric and astrometric accuracy of the Hotelling observer

with PSF-fitting and IBD we used data obtained with the Lick Observatory AO system

on the 3-m Shane telescope (Bauman et al., 1999). Closed loop images of bright, single

stars were obtained using the high-speed sub-array mode with a size of 64 × 64 pixels

of the 256 × 256 pixel IRCAL camera (Fitzgerald & Graham, 2006). This corresponds

to a field size of 4.864× 4.864 arc-seconds. The sub-array measurements were captured

with typical exposure times of 22ms. Each data set comprised ten thousand images.

All data were obtained in the K band (2.2µm) where the diffraction-limit is 151mas so

that the data were effectively Nyquist sampled. The individual short exposures were

registered with sub-pixel accuracy to produce shift-and-add images. The average Strehl

ratio of these SAA images was around 40%. For the details of the observations and data

reduction see Gladysz et al. (2006).

In our experiments we tested the accuracy of the photometry and astrometry on relatively-

low (SR≈ 30%), moderate (SR ≈ 40%) and high (SR ≈ 50%) Strehl data. All three

algorithms required an estimate of the PSF. This estimate was provided in the form

of a calibration PSF observed 10 → 20 minutes after the science observations. We

tested the algorithms with properly-matched PSFs (∆SR= 0.02%) and mismatched

PSFs (∆SR= 0.06%). We used observations of four different stars to create this test

data: IRAS 21549+3929 (mV = 12.1, mK = 5.96), HD 18009 (mV = 8.23, mK = 5.02),

HD153832 (mV = 7.25, mK = 4.78) and HD 143209 (mV = 6.3, mK = 3.92). Table

(4.1) shows which PSFs were used to create the three data sets.
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Table 4.1: PSF’s used to simulate binary images

Science PSF Reference PSF

Low Strehl

Matched IRAS 21549+3929 (SR = 0.29) IRAS 21549+3929 (SR = 0.32)

Mismatched IRAS 21549+3929 (SR = 0.29) HD18009 (SR = 0.35)

Medium Strehl

Matched HD15382 (SR = 0.43) HD15382 (SR = 0.42)

Mismatched HD15382 (SR = 0.49) HD15382 (SR = 0.42)

High Strehl

Matched HD143209 (SR = 0.54) HD143209 (SR = 0.52)

Mismatched HD143209 (SR = 0.54) HD15382 (SR = 0.49)

 0.6 arcsec 0.6 arcsec

Figure 4.1: The eight artificial companion locations on a circle of radius 0.6 arcsec-
onds.

Artificial binaries with differential magnitudes of ∆mK = 3.5 or 4.5 at a separation

of θ = 0.6′′ were simulated by scaling and shifting the single-star SAA images. For

each case 8 positions for the companion were tested in order to minimise the bias from

anisotropy in the PSF, see figure (4.1). The mean absolute astrometric and photometric

error was computed based on the results from these 8 positions.

While the Fitstars algorithm requires an initial estimate of the PSF, the estimate does

not have to be very good e.g. a single star image from a different observation run. For

these observations, Fitstars was tested with both properly matched and mismatched
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calibration PSFs. In addition to the PSF estimate, Fitstars also requires an estimate of

the initial locations of the stars in the image. These were obtained by visually examining

the image. Fitstars was then able to iteratively derive a solution for each star.

As the StarFinder PSF-fitting algorithm was designed for the analysis of crowded fields

imaged with AO, the fitting algorithm can take advantage of many estimates of the

PSF within the field of view. In this experiment StarFinder was provided with the PSF

estimate - an image of a single star. StarFinder had also to be given an estimate for the

position of the companion and it was observed that these estimates had to be precise;

otherwise the algorithm converged on the brightest static speckle. This situation was

treated as non-convergence.

The Hotelling observer was supplied with the same PSF estimate as StarFinder and

Fitstars. The star flux was estimated using a least-squares fit between the PSF and

the data, were it was assumed that the companion flux was negligible in comparison

to the flux of the star. The natural extension of this operation is to use the Hotelling

observer to jointly estimate the star and companion locations and intensities as in T.

Fusco et al. (1999). The observer was iterated using a gradient index maximisation for

the position of the companion, where the intensity was estimated at each test position

using the OHE. As with StarFinder and Fitstars the Hotelling observer required an

initial estimate of the position of the companion, however this estimate did not need to

be as precise as with the StarFinder code.

4.2.2 Results

Tables (4.2) and (4.3) present the results for the mean absolute error in astrometry

and photometry calculated using the three algorithms on the simulated data. The

photometric and astrometric accuracy of the three observers, for the case of a faint

companion with a matched PSF, is shown in figure (4.2).

The Hotelling algorithm always obtained the most accurate estimate for the position of

the companion. In all tests, bar one, the Hotelling algorithm returned the most accurate

estimate for the relative intensity of the companion. The Hotelling approach performed

best on the high SR data set when using a properly matched calibration PSF, and the

error in the results increase with decreasing SR.

As shown in figure (4.2(a)) the StarFinder error in astrometry is seen to depend very

strongly on the Strehl ratio, with much weaker dependence in the case of Fitstars and

the Hotelling observer. However, Fitstars fails to converge more often than the Hotelling
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algorithm or StarFinder. It is interesting that while StarFinder tends to provide less

accurate astrometry than Fitstars, its photometric performance is better.

The ability of Fitstars to handle poor initial estimates of the PSF is shown in the results,

where the accuracy using the mismatched PSF is practically the same as when using

the matched PSF. This ability also causes the algorithm to perform poorly when the

two stars are not well separated. When estimating the PSF, the estimate gets truncated

at the midpoint between the two stars. In this data set the two stars are quite close

together, 0.6 arcsec ≈ 4×FWHM . Therefore a large amount of the PSF structure was

not modelled completely and this leads to a decrease in the accuracy of the algorithm.

This can be clearly seen in the photometry, figure (4.2(b)), because any mis-estimate

of the PSF will cause large errors in the photometry. Astrometry only deals with the

central point of the PSF, and is therefore more robust to this error. Fitstars has been

shown to produce more accurate photometric measurements with more widely spaced

binary stars (Roberts et al., 2005).

4.3 Effects of Prewhitening

In order to establish the effect of the prewhitening operation on the data, the peak-

signal-to-noise ratio (PSNR) will be compared for the PSF-subtracted data and the

prewhitened PSF-subtracted data, see figure (4.3). The signal-to-noise ratio (SNR)

is defined as the ratio of the mean to the standard deviation of the measured data

(Roggemann, 1996).

The binary system HD170648 (mk = 7.21, ∆mk = 3.07, separation θ = 0.69”, spectral type A2)

was observed along with a properly-matched calibration PSF (HD 173869: mV =

7.9, mK = 7.53, spectral type A0), see Gladysz et al. (2008) for details. The covariance

matrix of the data (equation (2.11)) was computed as follows: the intensity of the cen-

tral star, A∗, is estimated using the calibration PSF in a simple least squares algorithm,

the background, b, was estimated as the mean of an annulus centred at the bright star

(see figure 4.4(b)) and the variance of the detector readout plus background was taken

as the variance of the annulus pixel values. The PSNR is computed in the following

way (Gladysz & Christou, 2008): the peak pixel value from the faint companion was

compared to the standard deviation of the noisy pixels located the same distance away

from the bright central star as the companion. This procedure is illustrated in figure

(4.4(a)).

The PSNR is given by:
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 0.6 arcseconds

(a) PSF subtracted data.

%

 0.6 arcseconds

(b) Prewhitened PSF subtracted data.

Figure 4.3: The binary image minus the scaled PSF (a) and the subsequent
prewhitened binary image (b).

 0.6 arcseconds

(a) Annulus of pixels at the separation of the compan-
ion, used to estimate the PSNR.

 0.6 arcseconds

(b) Annulus of pixels used to estimate the background
level and the variance of the detector readout.

Figure 4.4: SAA image of the binary system HD170648 (a). The white circle denotes
the location of pixels which were used to estimate the PSNR. The larger circle (b) is

used to estimate the background.

PSNR =
IPeak − Iring
σ(Iring)

. (4.6)

The estimated PSNR was higher for the prewhitened data (PSNR = 277) than for the

PSF subtracted data (PSNR = 164), see figure (4.5). Therefore the Hotelling observer
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should be capable of operating on low SNR data there other classical observers would

struggle.
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Figure 4.5: Comparison of pixel SNR for HD170648 in an annulus around the central
star including the companion location.

4.4 Observations of Real Binary Stars

A small proportion of the observations carried out by Gladysz & Christou (2008) were

aimed at binary stars. The analysis of two of the more interesting observations along

with the analysis of observations of SAO 83636 are now presented. These observations

were processed in the same manner as in section (4.2).

4.4.1 HD 235089

Figure (4.6(a)) shows the direct image of the binary star HD 235089 ( mk = 6.41). For

this observation due to very stable atmospheric “seeing” a very good calibration PSF

star was observed: HD 235160 (mk = 6.51). Figure (4.6(b)) shows the application of

the cross-correlating Hotelling observer, tHotMF , to this data.
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(a) Pre-processed image of the binary star HD 235089. (b) Hotelling cross correlation of HD 235089 after sub-
traction of the reference PSF, shown on a linear scale.

Figure 4.6: Observation of the binary star HD 235089 carried out at the Lick Obser-
vatory, shown on a log intensity scale and in false colour.

Figure (4.6(b)) shows that the prewhitening operation of the Hotelling observer smoothes

out the residuals after the PSF subtraction step. The binary companion is easily de-

tected above the smooth background, the PSF subtracted residual image has a PSNR

= 67.8. Starfinder computed differential astrometry of 0.58 arcseconds and the Hotelling

observer returned a very similar value of 0.579±2×10−9 arcseconds. However there was a

large difference in the differential photometry returned by the algorithms with Starfinder

returning ∆mk = 3.98 and the Hotelling observer returning ∆mk = 3.67 ± 5 × 10−10.

A simple matched filter, equation (3.5) was applied to the data to produce a third dif-

ferential intensity estimate. This observer returned differential photometry of ∆mk =

3.67 ± 1 × 10−9, very close to the Hotelling estimate. Therefore I would be inclined to

trust the results of the matched filter observers over that of StarFinder for this data.

4.4.2 HD 170648

As for the above data set, for HD 170648 ( mk = 7.21) a well matched calibration PSF

star HD 173869 ( mk = 7.53) was observed within ten minutes of the science data.

Figure (4.7(a)) shows the direct image of the binary star and figure (4.7(b)) presents

the Hotelling analysis.

The Hotelling approach again produced a smooth cross correlation where the companion

is clearly visible. Both the Hotelling observer and Starfinder produced very similar

astrometry with values of 0.692±2×10−9 arcseconds and 0.69 arcseconds respectively.
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(a) Pre-processed image of the binary star HD 170648. (b) Hotelling cross correlation of HD 170648 after sub-
traction of the reference PSF.

Figure 4.7: Observation of the binary star HD 170648 carried out at the Lick Obser-
vatory

In contrast to the previous data set both methods also extracted similar values for the

differential photometry of the companion, with the Hotelling observer returning a value

of ∆mk = 3.06± 1× 10−8 and Starfinder extracting a value of ∆mk = 3.07.

4.4.3 WDS 15038+2006

This final data set consists of observations of the binary system WDS 15038+2006

(mk = 7.554) and the calibration source TYC 149-123-1 (mk = 7.462). Figure (4.8(a))

shows the direct image of the binary star and figure (4.8(b)) presents the Hotelling

analysis. This data set had a significantly lower PSNR compared to the above data,

with a PSNR = 20.9.

The Washington Double Star catalogue quoted the separation of this system as 0.9

arcseconds. The Hotelling approach again produced a smooth cross correlation where

the companion is clearly detected. Both the Hotelling observer and Starfinder produced

very similar astrometry with values of 0.924±1×10−8 arcseconds and 0.932 arcseconds

respectively. For this data the two algorithms also extracted almost identical values of

photometry, ∆mk = 3.18.

The experiments reported upon in this chapter have shown that the Hotelling observer

can extract differential astrometry and photometry from real AO corrected data on par,
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(a) Pre-processed image of the binary star WDS
15038+2006.

(b) Hotelling cross correlation of WDS 15038+2006
after subtraction of the reference PSF.

Figure 4.8: Observation of the binary star WDS 15038+2006 carried out at the Lick
Observatory.

and often better, compared to two widely used state of the art algorithms in astonomy.

The benefits of prewhitening data has also been shown using the PSNR as a metric.



CHAPTER 5

THE QUASI-STATIC SPECKLE PROBLEM

As stated in section (1.4) instrumentally induced quasi-static speckles do not average

out over time (Marois et al., 2005). This chapter reports upon simulation work carried

out to implement the Simultaneous Difference Imaging (SDI) technique of Racine et al.

(1999); Marois et al. (2000) and the Angular Differential Imaging (ADI) approach of

Marois et al. (2006); Lafrenière et al. (2007). It should be stressed that simultaneous

differential imaging and angular differential imaging are not competing strategies. A

description of the multi-wavelength and sky rotated data will be outlined in section

(5.1). The area under the estimation receiver operating characteristic curve and the

peak signal to noise ratio will be used as the metrics to quantify the performance gain

of the SDI and ADI algorithms. It will be shown in section (5.3.5) that these operations

can be combined together to achieve greater speckle attenuation.

5.1 Data Simulation

To test the differential imaging algorithms a Gemini-type telescope (Simons et al., 1995)

was simulated in the Yorick development environment 1 with the following basic param-

eters:

• DPrimary = 8.1m,

• DSecondary = 1m,

• r0 = 1.5m @ 1.25µm,

1http://yorick.sourceforge.net/index.php

82
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• Observing wavelength: λ1 = 1.578, λ2 = 1.625 & λ3 = 1.652µm,

A fractal method was used to simulate independent Kolmogorov phase screens (Lane

& Dainty, 1992) having r0 = 1.5m at λ = 1.25 microns, a DPrimary = 8m and 10

sub-apertures across the pupil. Each screen is fitted with B-splines of third degree, the

number of which correspond to the number of actuators in the system i.e. 100. The

difference between the screen and the fit gives the residual phase, in this case 22nm.

A static phase screen is added to this; the static phase screens have an RMS error

of 30nm and follow a powerlaw with a slope of −2.5, see figure (5.1(a)), an example

of an AO corrected PSF simulated with this approach is presented in figure (5.1(b)).

This simulation corresponds to a situation where the errors due to the telescope optics

are constant during the observation, while the speckles due to residual atmospheric

observations are independent. This is realistic since the exposure times required to

give significant field of view rotation are much longer than the atmospheric coherence

time. A long exposure phase screen was approximated as the sum of 100 independent

Kolmogorov phase screens. A long exposure PSF was then simulated by taking the

square of the absolute magnitude of the Fourier transform of this screen.

50 100 150 200 250

50

100

150

200

250

(a) Residual AO corrected phase screen. (b) Simulated AO corrected PSF.

Figure 5.1: Example of simulated phase screen used to simulate AO corrected PSFs.

5.2 Simultaneous spectral difference imaging and the Hotelling

observer

The SDI approach of Racine et al. (1999) and Marois et al. (2000) was implemented

using the double difference algorithm:
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dd = (I1 − I2)− k(I1 − I3), (5.1)

where three images are recorded at three wavelengths: I1(λ1), I2(λ2), I3(λ3) and λ1 <

λ2 < λ3 and the constant k is given by the ratio of the Strehl ratios S of the data:

k =
Sλ1 − Sλ2
Sλ1 − Sλ3

. (5.2)

The Strehl ratio at each wavelength, Sλi , was estimated as the ratio of the peak of the

abberated PSF over the peak of a simulated diffraction limited PSF, where the intensity

in both images have been normalised to unity. The factor k can also be defined as the

mean ratio of the single difference images:

k =

〈
I1 − I2

I1 − I3

〉

(x,y)

. (5.3)

It should be noted that the planet signal will disappear as k approaches 1. This second

method for computing k was adopted as it was found to produce smaller image residuals

in the double difference image. The data simulated in the ‘off’ channels, i.e. the data

at λ = 1.625 µm & 1.652 µm, needed to be rescaled before subtraction from the first

wavelength channel so that the quasi-static speckle structure would line up. The data

was scaled in the following manner:

1. the data were Fourier transformed,

2. the Fourier transformed data was scaled by a factor of λ1/λi, where i = 2, 3, by

either adding or removing zeros from the Fourier spectrum,

3. the scaled Fourier transformed data was then inverse Fourier transformed to give

the image at the required wavelength.

The major limitation of this scaling method is the requirement for integer padding of the

Fourier transform. Cornia et al. (2010) have proposed a combination of zero padding the

data in the Fourier and image domains to improve the scaling procedure. However this

approach was not implemented here. For eight companion positions, see figure (5.2(a)),

300 noisy images, with and without a companion present, were simulated at the three

selected wavelengths, where the noise in each channel consisted of static speckle, Poisson

and detector readout noise. In this experiment the companion had a relative magnitude

of ∆mλ1 = 9, ∆mλ2 = ∆mλ3 = 14. The double difference method was applied to
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this data and the resulting residual image, see figure (5.2(b)), was processed with the

Hotelling observer. The mean of the two ‘off’ channel scaled PSFs was used as the SDI

double difference PSF estimate.

The Hotelling observer can be adapted to analyse SDI data (Barrett et al., 2006). In

the SDI data the Poisson and detector readout noise is assumed to be independent in

each wavelength channel. Therefore the noise terms will add together in the first and

second SDI difference images and the data covariance matrix can be expressed as:

[Kg]m,m′ =
[
σ2
m,λ1 + σ2

m,λ2 + bm,λ1 + bm,λ2 +A∗,λ1 +A∗,λ2
]
δm,m′

+ k ×
[
σ2
m,λ1 + σ2

m,λ3 + bm,λ1 + bm,λ3 +A∗,λ1 +A∗,λ3
]
δm,m′ .

(5.4)

The detector readout variance plus background, (σm,λi + bm,λi), can be estimated from

each channel using an annulus centred around the parent star.

(a) Planet locations for SDI simulations, displayed
on a square root scale.

(b) SDI double difference image for first companion
location, displayed on a square root scale.

Figure 5.2: Artificial companion positions used to test the SDI double differencing
method.

As a comparative technique another long exposure PSF was simulated at λ = 1.578µm,

with the same static phase screen as the SDI data but with different realisations of

Kolmogorov turbulence, with the same value of r0. This PSF was subtracted from the

first wavelength channel, λ1 and the residual image was processed with the Hotelling

observer using this PSF. This simulates having a perfect PSF calibrator at λ1. For this

data reduction method the Hotelling observer is applied in the same manner as in section

(4.2).
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An estimation receiver operating characteristic curve was computed for the SDI and PSF

subtraction difference methods and the corresponding area under the EROC curve was

determined. In this experiment, the tolerance for a correct estimate of the position of

the companion was set at 0.2 pixels and the tolerance on the relative intensity estimate

was 0.1 magnitudes. It should be noted that these two algorithms are not using the

same information. The PSF subtraction method has exact knowledge about the nature

of the uncorrected static aberrations in the system. Whereas the SDI DD approach only

knows the ratio of the imaging wavelengths, λ1/λ2, such that the algorithm can spatially

scale the data appropriately. An average EROC curve, presented in figure (5.3(a)), was

produced by averaging the EROC curves over the set of eight companion positions. The

area under the average EROC curves show that the PSF subtraction method performed

on average slightly better that the SDI double difference subtraction method.
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SDI DD (AUC = 0.67)
PSF Subtraction (AUC = 0.76)

(a) Average EROC Curves for the SDI double dif-
ferencing approach and PSF subtraction.

(b) Histograms for the photometry extracted from
the SDI double differencing data and the PSF sub-
traction data using the Hotelling observer.

Figure 5.3: EROC curves and histogram of photometric accuracy for the SDI double
differencing approach and PSF subtraction method.

A downside of using a single metric, the AEROC, to analyse the combination of three

tasks; faint companion detection and the computation of differential astrometry and

photometry, is that one does not learn about how well an observer carried out one of

the tasks independently of the other tasks. As the constraint on a correct estimate of

the companion location was so tight in this case the performance of an observer could

be investigated through the analysis of the computed differential photometry. For the

eight companion positions in figure (5.2(a)), with 300 realisations of noise per position,

a histogram was produced for the differential photometry calculated with the Hotelling

observer using the SDI double differencing method and the PSF-subtraction method,

given a correct companion location estimate has been made, see figure (5.3(b)). These
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histograms show why the PSF-subtraction method had on average a higher AEROC

compared to the SDI double difference subtraction method because the mean value of

the PSF-subtraction differential photometry was 8.99 magnitudes whereas the mean

value of the SDI double difference differential photometry was 8.95 magnitudes.

To illustrate the power of the Hotelling approach, the SDI double difference image was

processed with an aperture photometry algorithm. For each position in the difference

image the pixel intensities within a square aperture κ, of size 3× 3, centred at rtest were

summed and the mean of the aperture subtracted i.e.

taperture(g, rtest) =
∑

κ− < κ > . (5.5)

The resulting aperture photometry map was then thresholded to reject all values under

5 standard deviations of the noise. The noise and its standard deviation was estimated

in increasing annuli centred on the star. In contrast the Hotelling likelihood map of

the SDI double difference image was also thresholded to reject Hotelling test statistics

under 5 standard deviations of the mean of the test statistics. Figure (5.4) shows these

thresholded images.

(a) 5σ thresholded SDI double difference image
processed with an aperture photometry algorithm
(log scale).

(b) 5σ thresholded Hotelling Map of SDI double
difference image.

Figure 5.4: 5 σ thresholded maps of SDI double differencing method.

The Hotelling approach shows a clear peak at the location of the companion whereas the

peak in the aperture photometry map at the location of the companion (displayed on

a logarithmic scale, see figure (5.4(a))) is difficult to distinguish from the various false

positives surrounding it.
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To show the effectiveness of the Hotelling observer in a more quantitative manner than

a visual comparison the peak signal to noise ratio, equation (4.6), at the radius of the

companion was estimated for the SDI double difference aperture photometry map and

the SDI double difference Hotelling likelihhod map, see figure (5.5). The PSNR of the

Hotelling likelihood map is approximately three times that of the pixel PSNR.
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Figure 5.5: Peak SNR for the raw SDI double difference data and the Hotelling data
map at the radius of the companion.

The results presented in figures (5.3, 5.4 and 5.5) show that the Hotelling observer can

be combined with spectral difference imaging to improve the signal to noise ratio in

the double difference residual image and detect, locate and extract photometry of faint

companions.

5.3 Angular differential imaging (ADI) and the Hotelling

observer

The PSF construction algorithm of Lafrenière et al. (2007); Marois et al. (2006) and

the ‘two-by-two’ difference approach of Mugnier et al. (2009) were used to reduce simu-

lated angular differential type data. Both differencing strategies assume that an image

sequence is available to the algorithm whereby the limiting speckle structure is almost

static over the course of the observation run. For both algorithms the Hotelling observer

operates on the reduced difference image to compare the levels of quasi-static speckle

attenuation.
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5.3.1 Classical ADI

The ADI algorithm of Marois et al. (2006) is formulated around constructing a reference

PSF in which a compromise is reached between the level of quasi-static speckle noise

correlation in the reference PSF while making sure a sufficient companion displacement

has occurred so that there is no self-subtraction of the companion signal. Marois states

that a movement of at least twice the full width half maximum of the PSF is required.

The time delay, τmin, needed for the companion separation decreases as a function of

the inverse of the angular separation between the companion and the host star. The

initial step of this algorithm is to subtract the median of the image sequence from each

image:

IDi = Ii −median(I1, . . . , In), for i = 1 . . . n, (5.6)

where n is the number of images in the recorded sequence and the superscript D denotes

difference image. This median subtraction minimises the noise in parts of the image

which are dominated by pixel noise. The second step of this method takes the median

of two images acquired before the target image and two images recored after the target

image, in as close a time as possible, but which show enough field of view rotation

to ensure no companion signal overlap. The reference PSF is broken into rings to

accommodate the dependence of τmin on the angular separation within the reference

images. Therefore rings at different annuli will use different reference PSF images. The

intensity inside each ring, i, is then scaled to minimise the noise after the subtraction of

the reference PSF:

IADIi = IDi − a×median(IDi−b, I
D
i−b−1, I

D
i+c, I

D
i+c+1), for i rings, (5.7)

where a is the noise minimisation scaling factor, to be determined by the algorithm and

the reference images recorded before and after the target image are Ib and Ic. The noise

scaling factor a could be estimated for each ring using nonlinear optimisation algorithms

to find the minimum of the square of the total residual inside each ring:

ã = arg min
a




∑

ring

IADIi




2
 . (5.8)
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The set of difference images are then rotated to align their field of view rotation, θ, to

that of the first image in the sequence via a bilinear interpolation. Finally a median is

then taken over these aligned images:

IADIFinal = median(IADI1 , rot[IADI2 ,∆θ1−2],

rot[IADI3 ,∆θ1−3], . . . , rot[IADIn ,∆θ1−n]).
(5.9)

5.3.2 ADI-LOCI

The PSF reconstruction approach developed by Lafrenière et al. (2007) builds upon the

idea from classical ADI of splitting the reconstructed PSF into subsections in which the

residuals in the difference image are minimised. In this algorithm the target image is cut

up into small subsections and, independent for each new subsection, a linear combination

of the set of reference images is sought such that the subtraction of the constructed PSF

will minimise the noise. This algorithm is referred to as “locally optimised combination

of images” or ADI-LOCI.

The coefficients used to weight the combination of reference images to create a subtrac-

tion subsection, ST , are estimated by minimising the noise within a larger optimisation

subsection, OT . The optimal case is to make ST as small as possible, however in practice

the size of ST is limited by computational resources. On the other hand the size of OT is

determined by the same requirements as classical ADI, i.e. the need to retain the signal

of the companion. It should be noted that if OT is too small the algorithm “sees” the

signal of the companion as a residual to be minimised. The area of OT is given by:

A = NAπ

(
W

2

)2

, (5.10)

where W is the full width half maximum of the PSF and NA corresponds to the number

of PSF cores within the subsection. As in classical ADI the set of reference images, K,

must be selected such that the field of view rotation between frames is at least δmin apart

to negate self subtraction of the companion signal. The coefficients, ck, are computed

by the minimisation of the sum of the squared residuals of the optimisation subsection

minus the reference subsections:

σ2 =
∑

i

mi

(
OTi −

∑

k

ckOki

)2

, (5.11)



Chapter 5: The Quasi-Static Speckle Problem 91

where i is the pixel index, m is a mask used to reject bad pixels, k is the set of us-

able reference images and Oki are the reference subsections. This minimisation can be

expressed as a linear problem of the form:

x = A−1b, where

Ajk =
∑

i

miO
j
iO

k
i ,

bj =
∑

i

miO
j
iO

T
i , and

xk = ck,

(5.12)

where bold font denotes a matrix or vector. Solving this system of equations results in an

estimate of the coefficients ck. Under the assumption that all the reference subsections,

Ok are independent, A is always invertible, leading to a unique solution for ck. The

optimal reference subsection is then given by:

SR =
∑

k∈K
ckSk. (5.13)

In the following experiments polar geometry has been used to define the optimisation

subsections.

5.3.3 Initial Test of the Algorithm

Ten long exposure AO corrected PSFs were simulated at 1.578 µm. A field of view

rotation of 18◦ from frame to frame was simulated in the image sequence such that

the companion signal would not overlap in successive frames. Therefore the ADI LOCI

algorithm should perform equally well at all angular separations for this data set. In

practice such a field of view rotation can be achieved by either imaging very close to the

zenith, i.e. ≈ 30◦ (Artigau et al., 2008) or by sampling the object at observing times

that are spaced sufficiently. The latter method would have the drawback of possibly

covering different seeing conditions.

The optimisation subsections were selected by dividing annuli azimuthally, see figure

(5.6). The subtraction subsections were defined by their inner radius r, angular position,

θ, radial width, ∆r, and angular width, ∆θ. The optimisation subsections share their

r, θ and ∆θ with the subtraction subsections. The radial width of the optimisation



Chapter 5: The Quasi-Static Speckle Problem 92

data set consists in a sequence of 90 30 s images in the CH4-short
(1.58!m, 6.5%) filter obtainedwith ALTAIR/NIRI at the Gemini
North telescope (program GN-2005A-Q-16). The f /32 focal
ratio of the camera and 8 m primary mirror diameter lead to
0.02200 pixel!1. The images are saturated inside a radius of"0.700

from the PSF center. Short unsaturated exposures were acquired
before and after the saturated sequence to calibrate photometry
and detection limits. The corrected PSF FWHM was measured
to be 3.4 pixels, or 0.07400, and the Strehl ratio was "16%. The
Cassegrain rotator was fixed during all observations. Basic image
reduction and registering was done as in Marois et al. (2006).

The same procedure was used for optimizing each of N", NA,
g, and dr. First, the unsaturated PSF image was used to introduce
artificial point sources into the images at angular separations in
the range 50Y300 pixels (27k /DY160k /D) in steps of 5 pixels
(2:75k/D). Each artificial source was smeared according to its
displacement during an integration, and its intensity was set so
that its signal-to-noise ratio (S/N) would be "10 in the final re-
sidual combination. Next, a symmetric radial profile was sub-
tracted from each image to remove the seeing halo. Then the
subtraction algorithm was run on the sequence of images with a
range of values for the parameter under consideration. Finally,
the noise and the flux of each artificial point source in an aperture
diameter of one FWHM were measured in the residual image.
This process was repeated 50 times by placing the artificial sources
at different angular positions each time. The trial values for the
optimization of each parameter are listed in Table 1. For dr either
a fixed value is used throughout the image or we use one that

varies from 1.5 to 15 in units of the PSF FWHM. The optimal
value of a parameter was determined recursively, with the values
of the other parameters set first to the medians of the values listed
in Table 1 and then to their most recently determined optimal
value except for dr set at a fixed value of 1.5. The results are
shown in Figures 2Y5.

As can be seen in Figure 2, the minimum spacing has little
impact on the recovered flux at separations k100k /D, where
"80%Y90% of the flux is recovered independently of N". How-
ever, at small separations the effect is important and significant
loss in signal occurs, particularly for the smallest minimum dis-
placements. This is because the fraction of images in the subsetK
for which the point source partially overlaps that in the target im-
age is greater for smaller separations, where linear motion of the
point source is slower. The best overall S/N is obtained with
N" ¼ 0:5, for which the loss in the recovered flux is more than
compensated by the improvement in quasi-static speckle noise
attenuation.

Figure 3 shows that the residual signal of point sources is
strongly dependent on the size of the optimization subsections,
as expected from the discussion in x 2. When NA is too small, the
gain in attenuation is not sufficient to compensate for the larger
point-source subtraction and lower S/Ns are obtained, especially
at large separations. On the other hand, when NA is too large, the
quasi-static speckles are not subtracted as efficiently at small
separations and lower S/Ns result. Avalue ofNA ¼ 300 provides
the best overall S/N.

The parameter g has little effect on the performance (see Fig. 4),
although for angular separationsP50k /D regions more extended
radially (g ¼ 2) fare slightly better than regions more extended
azimuthally. Nevertheless, we adopt g ¼ 1 as the optimal value.

Finally, Figure 5 shows that at small separations (P60k /D), a
drk 6 leads to a lower S/N because it poorly matches the evo-
lution of #min with separation, as expected. Since a larger dr leads
to a faster execution of the algorithm, because fewer subtraction
subsections are required to cover the entire image, we use as the
optimal value a dr equal to 1.5 for separations less than 60k /D
and 15 for larger separations.

The optimal parameter values may vary slightly from those
found above for other sets of data depending on the telescope,

TABLE 1

Parameter Values Used for Optimization

Parameter Trial Values Adopted Value

N" .............................. 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 0.5

NA .............................. 50, 100, 150, 300, 500 300

g................................. 0.5, 1.0, 2.0 1.0

dr ............................... 1.5, 3, 6, 9, 15, (1.5Y15)a (1.5Y15)a

a We use dr ¼ 1:5 for separations less than 60k /D and dr ¼ 15 for larger
separations.

Fig. 1.—Example of subtraction (shaded in gray) and optimization (delimited by thick lines) subsections for ADI using the procedure of x 4.1. The left and right panels
show the subtraction and optimization subsections for the 1st and 13th subtraction annuli, respectively. In the right panel, the first 12 subtraction annuli (of width dr) are
marked by thin lines; dr increases with separation in this specific example. The central circle (cross-hatched region) represents the saturated region.

PSF SUBTRACTION ALGORITHM FOR HIGH-CONTRAST IMAGING 773No. 1, 2007

Figure 5.6: Example of subtraction subsections (grey) and optimisation subsections
(thick lines) for the ADI-LOCI algorithm (Lafrenière et al., 2007).

subsections was selected as 3 pixels after testing several trial values. The angular width

of the subsections is defined as:

∆θ =

(
2r

W

√
1

πNA

)−1

, (5.14)

where W = 2 pixels and NA = 300. A first test of the algorithm was carried out by

inserting an artificial companion into the images with an angular separation of 16 pixels

(4λ/D) and a relative magnitude of 10.

A radially symmetric average profile was subtracted from each image to reduce the seeing

halo. The ADI-LOCI algorithm was then applied to the image sequence. The residuals

were derotated, median combined and processed with the Hotelling observer, see figure

(5.7). The Hotelling observer detected the companion and estimated an angular separa-

tion of 10.43 pixels, an error of 0.43 pixels or ≈ 0.1λ/D and extracted a value of 9.953

magnitudes for differential photometry.

5.3.4 EROC Curves in ADI LOCI reduced data

In this section I report upon investigating the performance of the ADI LOCI algorithm

for faint companion signal detection, localisation and photometry. Artificial companions

with a relative magnitude of ∆mλ=1.578µm = 8 were placed at λ/D intervals out to 25λ/D
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(a) Single noisy image of simulated ADI image se-
quence, displayed on a square root scale.

(b) Median combination of ADI LOCI reduced im-
age sequence, displayed on a square root scale.

(c) Hotelling likelihood map of ADI LOCI reduced
image with mean of reconstructed PSFs.

Figure 5.7: Initial run of ADI LOCI algorithm

away from the primary star. At each companion separation 300 noisy image sequences

with and without a companion present were simulated. Both the companion absent and

present sequences were reduced with the ADI LOCI algorithm.

In the ADI data it was assumed that the Poisson and detector readout noise in each image

frame was independent. After the data was reduced using the ADI-LOCI algorithm the

variance of the residual background, plus the mean background level, was estimated

from an annulus of pixel values far away from the centre of the image.

The two-by-two angular subtraction method of Mugnier et al. (2009) was employed as

a comparison to the ADI LOCI algorithm. This method works by subtracting angular
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image pairs close enough in time such that there is little or no evolution of the static

speckle field while far enough apart to allow enough angular movement of the companion

to prevent self-subtraction. The difference images were derotated using bilinear inter-

polation, where a positivity constraint was applied to each frame. The derotated data

was then median combined and processed with the Hotelling observer. As an estimate

of the companion signal is needed by the Hotelling observer for the matched-filtering

operation, the final combined difference image was subtracted from the first image in

the ADI image sequence leaving only the star image. This star image was then used by

the Hotelling observer.

An EROC curve was computed for both reduction algorithms with the tolerance on a

correct companion location estimate of 0.1λ/D and the tolerance on a correct companion

intensity estimate of 0.1 magnitudes. The corresponding area under the EROC curve

was then determined. As the companion separation was increased a curve was mapped

out on the angular separation - AEROC plane, see figure (5.8).
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Figure 5.8: The area under the EROC curve as a function of the companion-star
separation.

Figure (5.8) shows that beyond 6λ/D there does not appear to be a relationship between

the AEROC and the angular separation of the companion. This is a logical result

as the inner optimisation subsections have the same number of reference images as
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the outer optimisation subsections and hence the level of speckle attenuation should

be comparable. The number of reference images available to the algorithm does not

depend upon angular separation in this simulation because the companion always moves

18◦ between frames. Therefore it was possible to reduce the size of the optimisation

and reference subsections to single pixels. Figure (5.8) also shows that after 5λ/D the

performance of the Mugnier two-by-two reduction algorithm is similar or better than

the ADI LOCI approach.

5.3.5 Multi-wavelength ADI-LOCI

Differential imaging is not constrained to using angular differential data. If simultane-

ous multi-spectral data has been acquired in addition to angular differential data, see

equation (5.15), the spectral data can be processed with the angular differential data to

improve the level of quasi-static speckle attenuation.

I(λ, θ) =




I(λ1, θ1) I(λ2, θ1) I(λ3, θ1)

I(λ1, θ2) I(λ2, θ2) I(λ3, θ2)
...

...
...

I(λ1, θn) I(λ2, θn) I(λ3, θn)




(5.15)

Where θ denotes the field of view orientation and n is the number of field of view angles.

In this study the SDI and ADI methods were combined in series: first applying SDI, as in

section (5.2), and then processing the residual SDI data with the ADI-LOCI algorithm.

To investigate the effect of combing these differential imaging techniques a simulation

was set up with the following parameters:

• SDI imaging wavelengths: λ1 = 1.578µm, λ2 = 1.625µm and λ3 = 1.652µm,

• Host star brightness = 3× 107e−

• Companion brightnesses: ∆mλ1 = 10 = 3000e−, ∆mλ2 = 16 = 12e−, ∆mλ3 =

16 = 12e−,

• Companion separation = 7× λ1/D.

For 300 realisations of noise (Poisson and detector readout) the simulated data were

reduced using only the ADI-LOCI method and then the SDI double difference approach

in combination with the ADI-LOCI algorithm. The variance of the residual noise plus

background were then estimated directly from the two reduced images and inputed into
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Figure 5.9: EROC curves for ADI-LOCI reduced data and SDI ADI-LOCI reduced
data.

equation (2.11) for use in the Hotelling observer. The tolerance for a correct estimate

of the companion location was set at 0.1λ1/D and the tolerance on the estimate of the

differential intensity was set at 0.1 magnitudes. An EROC curve was produced, see

figure (5.9), and the AEROC computed for both reduction methods. The results from

figure (5.9) show a significant increase in the AEROC when the data is processed with

the SDI double differencing method in combination with the ADI-LOCI approach.

In a separate experiment four companions were placed into the same image with differen-

tial magnitudes of ∆mλ1 = 10, 11, 12 & 13 at a separation of 7λ1/D from the central star

with a 90◦ angular separation between each other, see figure (5.10). Each companion in

turn had a differential magnitude of ∆mλ2 = ∆mλ3 = 15, 16, 17 & 18.

This data was reduced with SDI & ADI-LOCI and with ADI-LOCI alone. As before the

required parameters for the data covariance matrix model were estimated directly from

the residual. The Hotelling likelihood maps were calculated for both data reduction

methods and are presented in figure (5.11) on a logarithmic scale.

The three brighter companions are apparent in the SDI-ADI LOCI Hotelling likelihood

map however only the brightest source stands out above the residual noise in the ADI

LOCI map. These Hotelling likelihood maps were then thresholded to reject Hotelling

test statistic values under 3 standard deviations above the mean Hotelling noise level,

see figure (5.12).
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Figure 5.10: Four companions used to investigate using SDI in combination with ADI
LOCI (square root scale)

(a) Hotelling likelihood map for the data presented
in figure (5.10) reduced using SDI and ADI-LOCI
in series.

(b) Hotelling likelihood map for the data presented
in figure (5.10) reduced using ADI-LOCI alone.

Figure 5.11: Hotelling likelihood maps for SDI & ADI-LOCI in combination and for
ADI-LOCI alone, (logarithmic scale)

The thresholded SDI ADI-LOCI Hotelling likelihood map reveals the presence of the

three brighter companions with a very weak signal at the location of the faintest compan-

ion. The thresholded ADI-LOCI Hotelling likelihood map also detects the two brighter

companions, however the two fainter sources are not. It is therefore reasonable to con-

clude that the subtraction of properly scaled multi-spectral data can result in faint

companion detections of an order of magnitude fainter that would otherwise be possible.

Finally the SNR of the Hotelling likelihood maps at the radius of the companions was
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(a) Thresholded Hotelling likelihood map for the
map presented in figure (5.11(a)).

(b) Thresholded Hotelling likelihood map for the
map presented in figure (5.11(b)).

Figure 5.12: Thesholded Hotelling likelihood maps for the data presented in fig-
ure(5.11), displayed on a logarithmic scale.
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Figure 5.13: The logarithm of the Hotelling SNR at the radius of the companions for
the two Hotelling likelihood maps above

estimated, see figure (5.13). This plot shows four clear peaks, one at the position of each

companion, in the log-SNR of the ADI-LOCI Hotelling likelihood map whereas only two

peaks are evident in the ADI-LOCI Hotelling likelihood log-SNR.



CHAPTER 6

PSF RECONSTRUCTION FROM MULTI-WAVELENGTH

DATA

This chapter investigates an alternative approach to differential imaging to suppress

quasi-static speckle noise and recover the PSF of the imaging system. This approach is

based around using focal plane data to estimate the aberrated phase in the pupil plane

of the telescope and hence recover the PSF via Fourier methods.

6.1 Image Formation

The image formation process can be expressed as the convolution of the system PSF

and the observed object:

i(r) = o(r) ∗ p(r) + n(r), (6.1)

where r is the vector of focal-plane coordinates, i is the recorded image, o is an exact

representation of the object in the focal plane, p(r) is the system PSF, which is assumed

to be isoplanatic i.e. it does not vary over the field, ∗ denotes convolution and n comprises

all the additive noise terms.

The incoherent impulse response function of a system is the squared modulus of the

inverse Fourier transform of the generalised pupil function:

p(r) = |FT−1 [H(ρ) exp{iφ(ρ)}] |2, (6.2)

99
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where φ denotes the phase inside the pupil, ρ = λu, λ is the imaging wavelength, u is

the spatial frequency in radians and H is the binary pupil mask with a value of 1 inside

the pupil and 0 everywhere else (Roddier, 1981).

With this image formation model the system PSF is fully described by the pupil phase

φ. Furthermore equation (6.2) implies that the optical transfer function of the system

can be expressed as the auto-correlation of the pupil function:

OTF (ρ) = H(u) exp{iφ(ρ)} ⊗H(ρ) exp{iφ(ρ)}, (6.3)

where the correlation of two complex functions h1 and h2 is defined by:

[h1 ⊗ h2] (u) ,
∫
h∗1(t)h2(t+ x)dt. (6.4)

6.2 Iterative PSF Estimation or the Phase Retrieval Prob-

lem

Fundamentally the phase retrieval problem aims to determine the phase of a complex

function, i.e. the phase of an incoming wavefront, from information about its squared

modulus, i.e. the system PSF. Using the image formation model above, equation (6.1)

can be written in the Fourier domain as:

I = O × P +N, (6.5)

where capital letters denote the Fourier transformation of the function represented by

the corresponding lower case letter i.e. I is the Fourier transform of i. This form

suggests a simple deconvolution method - having a PSF, an estimate of the object

could be obtained by inverting equation (6.5). Unfortunately this inversion leads to an

amplification of noise, which is always present when making observations. This effect

can be partly alleviated by using a Wiener filter in the inversion of equation (6.5) (Press

et al., 1986).

If the pupil support of the system is known and the object being imaged is a point source

there exists methods of estimating the pupil phase from a single focal plane intensity

measurement (Gerchberg & Saxton, 1972; Gonsalves, 1976). This algorithm aims to
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estimate a phase which best fits the known pupil and focal plane constraints via an

iterative search method.

In AO-corrected astronomical observations the PSF is never known exactly. A further

complication is that the AO-corrected PSF can have a complex asymmetric form. In

this case both the object and the PSF have to be extracted from the data. We have

already seen that this problem is referred to as blind deconvolution (Stockham et al.,

1975). Ayers & Dainty (1988) proposed a Gerchberg-Saxton type iterative algorithm

to solve for two positive functions, o and p which provide the best solution to equation

(6.1).
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Figure 6.1: General deconvolution algorithm of Ayers & Dainty (1988).

The algorithm works in the following manner: firstly, a nonnegative-valued initial es-

timate õ0 is input to the iterative algorithm; this function is then Fourier transformed

to yield Õ; the tilde denotes an estimate of the function, Õ is then inverted to form an

inverse filter and multiplied by I (equation (6.5)) to form P . This estimated Fourier

spectrum is then inverse transformed to give p, the first estimate of the PSF. A non-

negativity constraint is then applied to p and it is then Fourier transformed to give P̃ .

This function is then inverted and multiplied by I to give the next estimate Õ1. The

iterative loop is completed by inverse Fourier transforming Õ1 to give o1 and applying a

non-negativity constraint to yield õ1. The loop is repeated until two positive estimates

of o and p, which satisfy the required convolution i, are found. See figure (6.1).

Lane (1992) showed that this algorithm does not converge in a stable way, that is the

solution is not unique. For example, an extra iteration of the Ayers-Dainty algorithm
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may result in new estimates of o and p that are worse, both in terms of their error metric

and visually, than the previous estimates. Therefore if the object being imaged or the

pupil function are unknown additional information is required to recover the PSF.

6.3 PSF Reconstruction via Phase Diversity

Phase diversity refers to a method which can be used to infer phase aberrations in the

pupil plane from focal plane image data. This methods allows one to estimate both

an unknown observed object and the unknown phase aberrations of an imaging system.

This technique was first proposed by Gonsalves & Childlaw (1979); Gonsalves (1982),

later refined by Paxman et al. (1992); Paxman et al. (1996) and recently reviewed by

Mugnier et al. (2006). The phase aberration parameters are estimated by minimising

an objective function which requires at least two images of the object, but does not

depend upon an object estimate. Typically one of the detected images is a conventional

focal-plane image which is degraded by unknown aberrations such as those induced by

atmospheric turbulence, misaligned optics or imperfections in the mirrors of the tele-

scope. The second image of the same object is formed by perturbing these unknown

aberrations in some known fashion e.g. adding a known amount of defocus or changing

the observed wavelength (Ingleby & McGaughey, 2005; Lofdahl et al., 2001). The infor-

mation provided by the second image leads to a unique solution for the unknown phase

aberrations of the imaging system used to acquire the data.

Formally phase diversity is introduced into the second image by adding a known phase

function into the generalised pupil function:

Hk = |Hk| exp{i[φ+ θk]}, (6.6)

where φ is the unknown phase function to be estimated and θk is the known added

phase function corresponding kth diversity image.

The unknown phase function φ can be expressed as the expansion on basis functions:

φ(u) =
J∑

j=1

αjθj(u), (6.7)

where J is the number of coefficients used in the set {αj} and {θj} is a set of basis

functions such as complex exponentials which are orthogonal on a square support or the
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set of discretised Zernike polynomials (Noll, 1976) for a circular aperture. As a large

number of telescopes have circular pupils the Zernike polynomials are a convenient basis

set as the polynomials form an orthogonal basis set on a unit disk. Each polynomial

is produced by taking the product of a trigonometric function of polar angle θ with a

function of radius r:

Zi(r) = Rmn (r)Θm
n (θ), (6.8)

where:

Θm
n (θ) =





√
n+ 1 if m = 0√
2(n+ 1) cos(mθ) if m 6= 0 and i is even√
2(n+ 1) sin(mθ) if m 6= 0 and i is odd

(6.9)

and:

Rmn (r) =

(n−m)/2∑

s=0

(−1)s(n− s)!
s! [(n+m)/2− s]! [(n−m)/2− s]!r

n−2s. (6.10)

The expansion of the phase using Zernike polynomials reads:

φ(r) =

∞∑

k=1

akZk(r). (6.11)

However in practice the sum of the polynomials is limited to a finite number depending

upon the problem. There is no loss in information in parameterising the phase in this

manner as the basis functions could be composed of a point-by-point set of Kronecker

delta functions to model the unknown phase function.

The problem is now as follows: given a set of diversity images {ik}, a known phase

diversity function {θk} and pupil functions {|Hk|}, estimate the object o and phase

function basis coefficients α. If the dominant noise source in the data is modelled as

an additive, independent and identically distributed random variable with a zero mean

Gaussian PDF with a variance of σ2
k the normal probability density function is:

p(ik; o, α) =
1

(2πσ2
k)

2
exp−

{
(ik − o ∗ pk)2

2σ2
k

}
, (6.12)
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where p̃k is an estimate of the PSF in the kth diversity channel dependent upon the

phase coefficients α. Maximising the logarithm of this likelihood function will lead to

a maximum likelihood estimate for the object and phase parameters where the log-

likelihood is given as:

L(o, α) = −
K∑

k=1

[ik − o ∗ pk]2 . (6.13)

Applying discrete versions of Parseval’s theorem and the convolution theorem leads to

the relation:

L(o, α) = − 1

N2

K∑

k=1

|Ik −OPk|2, (6.14)

where the diversity images are size N ×N pixels and the capital letters denote discrete

Fourier transforms of the corresponding lower case quanties.

At this point it should be noted that there may be an important difference in the signal

to noise ratio in the diversity images. To compensate for this, in the case of K = 2,

Löfdahl & Scharmer (1994) proposed to introduce a scaling parameter to compensate:

γ = σ2
1/σ

2
2. (6.15)

where σ1 and σ2 are the RMS values of the noise in the two diversity images. The

modified log-likelihood now reads as:

L(o, α) = −
{
|I1 −OP1|2 + γ|I2 −OP2|2

}
. (6.16)

Nonlinear optimisation algorithms could be directly applied to this modified log-likelihood

function to estimate both the object and phase parameters. However this would require

searching over a very large dimensional space of object and phase parameters. Paxmann

(Paxman et al., 1992) noticed a significant reduction in the dimension of the required

space for the case of two diversity images, K = 2. This reduction stems from deriving

an objective function which only depends upon the phase parameters and not upon an

object estimate. This is only possible due to the existence of a closed-form expression for

the object which maximises the modified log-likelihood for a given set of phase functions:
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OM =
I1P

∗
1 + I2P

∗
2

|P1|2 + γ|P2|2
, (6.17)

where the asterisk as a superscript denotes complex conjugation. Substituting equation

(6.17) into equation (6.16) results in an objective function which only depends upon the

unknown phase parameters:

LM (α) = −
∑

u

|I1(u)P2(u)− I2(u)P1(u)|2
|P1(u)|2 + γ|P2(u)|2 , (6.18)

where it has been assumed that the estimates P̃1(u) and P̃2(u) do not both go to zero

for the same u.

The Gonsalves objective function, equation (6.18) can be generalised to make use of

an arbitrary number of wavelength diversity images. Paxman et al. (1992) shows that

the general object which minimises the log-likelihood function, equation (6.12), for any

number of diversity images is given by:

OM =

∑K
k=1 Ik(u)P ∗k (u)
∑K

l=1 γl|Pl(u)|2
, (6.19)

where

γl = σ2
1/σ

2
l . (6.20)

Furthermore they show what when equation (6.19) is substituted into equation (6.13)

and dropping the 1/N2 scaling factor this results in a generalised objective function:

LM (α) = −
∑

u

∑K−1
j=1

∑K
k=j+1 |Ij(u)Pk(u)− Ik(u)Pj(u)|2

∑K
l=1 γl|Pl(u)|2

. (6.21)

In practice the objective function LM is minimised numerically to obtain an estimate for

the phase basis coefficients α. The minimisation is performed by a conjugate-gradient

method which also employs a trust region (Byrd et al., 2000; Powell, 1978).

The bounds on the minimisation process are estimated empirically from the data. The

Strehl ratio of the data is estimated, a random vector of Zernike coefficients is then

generated which match this Strehl ration to ±1%. The values of the basis coefficients are

then bounded at twice the maximum value of this random vector of Zernike coefficients.
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The minimisation process uses this random vector of Zernile coefficients as the initial

starting point for the minimisation.

The minimisation terminates when the difference in the estimates of the phase coeffi-

cients from one iteration to the next approaches the precision of the machine.

6.4 Wavelength Diversity: An Application of Phase Di-

versity

We propose to use an approach referred to as Wavelength Diversity (Ingleby & Mc-

Gaughey, 2005; Lofdahl et al., 2001) to estimate the residual AO corrected phase in

the pupil of an astronomical telescope. Wavelength diversity is a variant of the classi-

cal phase diversity method presented above. Wavelength diversity introduces a known

phase perturbation by changing the imaging wavelength by a known amount. Formally

wavelength diversity alters the phase diversity equation (6.6) by scaling the unknown

phase, φ, instead of adding a known phase function to it:

Hk = |Hk| exp{i[φθk]}. (6.22)

Two diversity images were simulated at λ1 = 1.64 µm and λ2 = 1.80 µm with a known

phase function, see figure (6.2(a)). The matlab function fmincon was then used to find

minimum of equation (6.21) using the first 30 Zernike polynomials to model the pupil

plane phase. A first guess at the vector of Zernike coefficients, αinitial, was computed

as a vector of zero mean Gaussian random numbers scaled to follow a f−2 power law.

Bounds were placed upon the maximum and minimum values of the estimates of the

Zernike coefficients and the phase in the pupil plane was bounded by a binary pupil

mask. In this test the algorithm was given 27 random starts where the PSF with the

minimum least square error between the estimated PSF and the data was taken as the

best estimate. This result is shown in figure (6.2(a)). As can be seen in figure (6.2(a))

the error metric (equation (6.21)) appears to be insensitive to the sign on the even

radial order Zernike coefficients. This error on the sign of the even radial order Zernike

coefficients is to be expected since the PSF may be obtained by Fourier transforming the

autocorrelation function of the complex amplitude in the pupil; if the pupil is symmetric,

then the pupil autocorrelation of an even phase function does not depend on the sign of

that function. This can be verified using the fact that the autocorrelation of the pupil

complex amplitude, a(u) and the autocorrelation of a∗(−u) are equal. In this test we use

a symmetric pupil function; therefore the algorithm does not retrieve a unique solution
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to the phase. However the solution appears to be close enough to the global minimum to

be a useful solution. In reality, it is probable that asymmetries in the pupil will remove

this sign ambiguity.

The multi-spectral angular data, I(λ, θ), used in section (5.3.5), was processed angle-

by-angle by the wavelength diversity algorithm in order to test the approach on a more

realistic data set than above. The focus of this experiment is two fold: firstly; to

investigate how well wavelength diversity algorithm estimated the pupil plane phase and

secondly, to contast the SDI differencing method with the subtraction of the wavelength

diversity PSF estimate.

For each field of view angle in the angular data, θ1,...,n=11, the wavelength diversity

algorithm estimated a pupil phase using the first three hundred Zernike polynomials and

three corresponding PSF estimates, one per wavelength channel. For each wavelength

channel the corresponding estimated PSF was used to subtract the signal of the central

star. The three residual images were then medianly combined.

The set of n field of view residual images were then reduced using the ADI-LOCI al-

gorithm to further attenuate any residual speckle noise. The final wavelength diversity

ADI-LOCI residual image was operated upon by the Hotelling observer to extract dif-

ferential astrometry and photometry of any faint companion present. The results of this

operation are presented in table (6.1).

Table 6.1: SDI and ADI LOCI versus Wavelength diversity and ADI LOCI

Error in Differential Error in Differential

Astrometry Photometry

(units of λ1/D) (magnitudes)

SDI ADI-LOCI 0.057 0.29

Wavelength diversity 0.043 0.31

The AO corrected long exposure phase screen used to simulate the first field of view

in the angular data, I(θ1, λ1,2,3), is shown in figure (6.3(a)). The RMS of this residual

phase screen was estimated at 37nm. The wavelength diversity estimate of this phase

screen is presented in figure (6.3(b)). The difference between the true phase screen and

the estimated phase screen is presented in figure (6.3(c)). The estimated residual RMS

difference between these phase screens was 6nm. This residual phase error is comparable

to the 5−10nm RMS residual static aberration which is required to detect warm Jupiters

on a 8m class telescope (Mugnier et al., 2008).

To contrast the accuracy of the wavelength diversity phase estimation, the AO corrected

phase screen was fitted directly with the first three hundred Zernike polynomials. The
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Figure 6.2: Initial simulations of our wavelength diversity approach resulted in pupil
phase estimates with a sign ambiguity on the even radial order Zernike coefficients. The
corresponding PSF estimates, (c) & (d), were identical due to the fact that if the pupil
is symmetric, then the pupil autocorrelation of an even phase does not depend on the

sign of that function.
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result of this fit is shown in figure (6.3(d)). When subtracted from the AO corrected

phase screen the residual RMS error was estimated at 4nm. Comparing this phase

error to that of the wavelength diversity procedure shows that the wavelength diversity

approach can recover the unkown AO corrected long exposure phase to a high degree of

accuracy.
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(a) AO corrected long exposure phase screen (b) Wavelength diversity estimate of the phase in (a)

(c) Phase difference between the AO corrected phase
screen and the Wavelength diversity phase estimate

(d) Zernike fit to the AO corrected phase screen in (a).

Figure 6.3: An AO corrected long exposure phase screen is presented in (a) along
with the wavelength diversity estimate of this phase (b). The difference between these
screens is shown in (c), the residual RMS difference of this phase screen was estimated
at 6nm. A direct Zernike fit to the AO corrected phase is shown in (d), the residual
RMS difference between this screen and the AO corrected screen was estimated at 4nm.
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CONCLUSION

7.1 Summary of Thesis Work

In this thesis the task of detecting, locating and estimating the intensity of a faint com-

panion in adaptive optics corrected astronomical images has been reviewed. A general

overview of the theory of light propagation through the turbulent atmosphere has been

presented. The primary components of an adaptive optics system have been described,

followed by an outline of the main factors which contribute to the difficulty in detect-

ing a faint companion, i.e. differentiating the signal of a faint companion from residual

quasi-static speckle noise. A framework for the application and assessment of the op-

timal linear observer, the Hotelling observer, to adaptive optics corrected astronomical

data has been introduced. The main work during this thesis has been to investigate the

performance of the Hotelling observer in detecting, locating and estimating the intensity

of a faint companion in adaptive optics corrected astronomical images. This study has

been carried out by numerical simulation of astronomical adaptive optics systems and

also through the application of the observer to pseudo-real data. The residual quasi-

static speckle noise problem has been addressed in two different approaches: differential

imaging and PSF recovery from multi-wavelength data. A summary of the main inves-

tigation is presented below, followed by a discussion of topics which could benefit from

future study.

Robustness of the Hotelling observer

111
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The Hotelling observer was derived with the assumption that the noise in the data

could be approximated by a Gaussian distribution, that the data covariance matrix was

invertible and equal under both companion present and absent hypotheses and that

the parameters of the data, e.g. star intensity or background level, could be correctly

estimated from the data.

Using the adaptive optics simulation code PAOLA, the Hotelling observer was tested on

varied data to try and establish the dependence of the observer upon the parameters of

the data; when carrying out a detection task.

The results show that when the Hotelling observer is supplied with accurate estimates

of the: star intensity, companion intensity, companion position, background level, de-

tector readout variance and a precise PSF estimate a good model of the data covariance

matrix is produced and along with a exact matched-filter template resulted in superior

faint companion detection compared with a simple matched-filter or PSF subtraction

approach. The results also show an almost linear increasing trend in the performance

of the Hotelling observer with: companion brightness, companion separation from the

central star and the level of adaptive optics correction. Apart from quasi-static speckle

noise these parameters are the main contributors to the detection limits of an imaging

system and hence as these constraints are relaxed it makes sense that the performance

of the observer would increase accordingly. When the observer was feed incorrect esti-

mates of the data parameters the only parameters which resulted in a noticeable drop

in detection performance were mismatches in the companion position and mismatches

in the PSF profile (Strehl ratio).

When the observer was tasked with also estimating the position and intensity of the

companion the performance of the observer appeared to depend on the separation of

the companion and the mismatch between the PSF profile of the data and the scanning

template.

Binary star parameter estimation

A review of two state of the art algorithms for the computation of differential astrometry

and photometry from adaptive optics corrected data is presented. The performance of

the Hotelling observer was compared to these algorithms using observations of single

star data obtained with the Lick observatory adaptive optics system on the 3m Shane

telescope. The single star data was used to simulate artificial companions by scaling

and shifting the single stars.
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The experiments consisted of applying the Hotelling observer, the PSF-fitting algorithm

StarFinder and the IBD algorithm Fitstars to data with properly matched and mis-

matched PSFs. The Hotelling observer always obtained the most accurate estimate for

the position of the companion. In all cases, bar one, the Hotelling observer also returned

the most accurate estimate for the intensity of the companion.

The superior performance of the Hotelling observer over the other two algorithms was

shown via the PSNR to stem from prewhitening the PSF subtracted data to flatten the

residuals.

The Quasi-static speckle problem

Instrumentally induced quasi-static speckle noise does not average out with increasing

exposure time (Marois et al., 2005). Two complementary methods were investigated to

deal with the two main drawbacks of applying the Hotelling observer: the inability of

the observer to distinguish faint companions from point-like speckles and the necessity

of an accurate PSF estimate.

A new data simulation algorithm, which simulated adaptive optics corrected Kolmogorov

phase screen to generate long exposure PSFs was used to produce multi-wavelength and

multi angular field of view data.

The first data reduction method consisted of using the spectral double differencing

method of Marois et al. (2005), where a PSF was estimated by subtracting the dou-

ble difference residual image from the original data, in combination with the Hotelling

observer. The results of the data reduction show that the PSNR of the Hotelling data

map is ≈ 2 times greater than the corresponding pixel residual image.

The second method involved using the angular differencing algorithm of Lafrenière et al.

(2007). The ADI-LOCI algorithm was initially applied using a single wavelength channel.

As part of the algorithm a PSF estimate was produced. Scanning the residual ADI-LOCI

image with the Hotelling observer resulted in a faint companion (∆mk = 10) detection,

with an error in astrometry of 0.1λ/D and photometry error of 0.05 magnitudes.

When the spectral double differencing approach and the ADI-LOCI algorithm were used

in series the PSNR in the residual Hotelling likelihood map increased by a factor of 10.

PSF recovery from multi-wavelength data

The final topic of this thesis investigated using multi-wavelength focal plane data to esti-

mate the adaptive optics corrected phase in the pupil plane of an astronomical telescope

and hence recover the system PSF at any wavelength via Fourier methods.
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A general overview of the phase retrieval problem and phase diversity is presented. The

framework for recovering the unknown corrected pupil phase from focal plane data is

derived and the minimisation of multi-variate error metrics is reviewed. The approach

used in this investigation denoted wavelength diversity is a generalisation of phase di-

versity which makes use of multi-wavelength data instead of defocus information. The

phase was modelled using a Zernike decomposition.

Initial results using this approach revealed an insensitivity on the estimated sign of the

even radial Zernike coefficients. This explained by the fact that the autocorrelation of

the pupil complex amplitude, a(u) and the autocorrelation of a∗(−u) are equal.

Applying the wavelength diversity approach to realistic simulated data resulted in the

accurate recovery of the system PSF and pupil phase. The computed PSF estimate,

when used with the Hotelling observer, produced astrometry and photometry on par with

the current state of the art differential imaging method. Furthermore the recovered pupil

plane phase estimate closely matched a direct Zernike polynomial fit to the simulated

phase.

Although the difficulties associated with applying the Hotelling observer to quasi-static

speckle noise dominated AO-corrected images have not been fully resolved, the investi-

gations in this thesis have set out a path for future study.

7.2 Future Work

If data is also recorded in time, the data set is a spatio-temporal random process. A

spatio-temporal data covariance matrix can be estimated from the data and the corre-

sponding spatio-temporal Hotelling observer applied to the data (Caucci et al., 2009).

The data covariance matrix becomes three dimensional, two spatial and one time di-

mension, on the order of N ×N × J , were each image is of size N ×N and there are J

recorded images. It would be interesting to investigate how this method would perform

on data with dominant quasi-static speckle noise.

Concordantly simultaneous multi-wavelength data can be thought of as a spatio-spectral

random process. It would be intriguing to estimate a three dimensional, two spatial and

one spectral dimension, spatio-spectral data covariance matrix from multi-wavelength

data to study the performance of the spatio-spectral Hotelling observer in the presence

of quasi-static speckle noise.

The simulated adaptive optics corrected phase screens used in this thesis contained

residual high spatial frequencies. In the investigations reported upon in section (6.4)
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the unknown phase was modelled using Zernike basis functions as they are orthogonal on

the unit circle, close to the optimal basis functions for describing a wavefront degraded by

Kolmogorov turbulence, i.e. the Karhunen-Loeve functions (Fried, 1977; Lane & Tallon,

1992) and they are mathematically well defined and are tractable. However; a large

number of polynomials, greater than 100, must be used to precisely model the phase.

The phase model could be made simpler by trying to estimate the point-by-point phase

values inside the telescope pupil. The basis functions could therefore be the Kronecker

delta functions.
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Blanc-Féraud, L., Mugnier, L. M., & Jalobeanu, A. 2010, Inverse Problems in Vision

and 3D Tomography (ISTE), 97–121

Bloemhof, E. E. 2003, The Astrophysical Journal Letters, 582, L59

—. 2004, The Astrophysical Journal Letters, 610, L69

Bloemhof, E. E., Dekany, R. G., Troy, M., , & Oppenheimer, B. R. 2001, The Astro-

physical Journal Letters, 558, L71

Burke, D., Gladysz, S., Roberts, L., Devaney, N., & Dainty, C. 2009, Publications of the

Astronomical Society of the Pacific, 121, 767

Byrd, R., Gilbert, J., & Nocedal, J. 2000, Mathematical Programming, 89, 149

Cagigal, M. P., & Canales, V. F. 1998, Optics Letters, 23, 1072

Cagigal, M. P., & Canales, V. F. 2000, J. Opt. Soc. Am. A, 17, 903

Caucci, L. 2007, Point Detection and Hotelling Discriminant: An Application in Adap-

tive Optics, M.Sc. Thesis

Caucci, L., Barrett, H. H., Devaney, N., & Rodŕıguez, J. J. 2007, J. Opt. Soc. Am. A,
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Véran, J., Rigaut, F., Mâıtre, H., & Rouan, D. 1997, J. Opt. Soc. Am. A, 14, 3057

Wild, W. J., & Le Bigot, E. O. 1999, Optics Letters, 24, 190


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Preface
	1 Adaptive Optics Imaging
	1.1 The Kolmogorov Model of Turbulence
	1.2 Propagation of light through the turbulent atmosphere
	1.3 Adaptive Optics
	1.3.1 Wavefront Sensing
	1.3.2 Wavefront Reconstruction and System Control
	1.3.3 Wavefront Correction

	1.4 Speckle Noise in Adaptive Optics Images
	1.4.1 Speckle Noise Discrimination

	1.5 Differential Imaging

	2 Optimal Detection and Characterisation of Faint Companions
	2.1 Statistical Decision Theory
	2.1.1 Binary Decision Model
	2.1.2 The ROC, LROC and EROC curves

	2.2 The Ideal Observer
	2.3 The Hotelling Observer

	3 Application of the Hotelling Observer
	3.1 Data Simulation with PAOLA
	3.2 Robustness of the Hotelling Observer
	3.2.1 Varying Companion Brightness
	3.2.2 Increasing Companion Separation
	3.2.3 Increased background intensity and variance of the detector  readout noise
	3.2.4 Varying Seeing Conditions
	3.2.5 Mismatching the companion brightness in the template vector
	3.2.6 Mismatching the companion position in the template Vector
	3.2.7 Mismatching the background intensity
	3.2.8 Mismatching the variance of the detector readout
	3.2.9 Mismatching seeing conditions

	3.3 Localisation Receiver Operating Characteristic Curves with simulated data
	3.3.1 Increasing Companion-Star Separation
	3.3.2 Mismatch in Seeing Conditions

	3.4 Estimation Receiver Operating Characteristic Curves with Simulated Data
	3.4.1 Mismatch in Seeing Conditions

	3.5 Detection and localisation of Shack-Hartmann spots for Wavefront Sensing in Strong Turbulence

	4 Binary Star Parameter Estimation
	4.1 Current State of the Art Methods
	4.1.1 StarFinder
	4.1.2 Iterative Blind Deconvolution

	4.2 Comparison of the Hotelling observer to Fitstars and Starfinder using AO corrected Lick data.
	4.2.1 Observations
	4.2.2 Results

	4.3 Effects of Prewhitening
	4.4 Observations of Real Binary Stars
	4.4.1 HD 235089
	4.4.2 HD 170648
	4.4.3 WDS 15038+2006


	5 The Quasi-Static Speckle Problem
	5.1 Data Simulation
	5.2 Simultaneous spectral difference imaging and the Hotelling observer
	5.3 Angular differential imaging (ADI) and the Hotelling observer
	5.3.1 Classical ADI
	5.3.2 ADI-LOCI
	5.3.3 Initial Test of the Algorithm
	5.3.4 EROC Curves in ADI LOCI reduced data
	5.3.5 Multi-wavelength ADI-LOCI


	6 PSF Reconstruction from Multi-Wavelength Data
	6.1 Image Formation
	6.2 Iterative PSF Estimation or the Phase Retrieval Problem
	6.3 PSF Reconstruction via Phase Diversity
	6.4 Wavelength Diversity: An Application of Phase Diversity

	7 Conclusion
	7.1 Summary of Thesis Work
	7.2 Future Work

	Bibliography

