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Abstract

A generalised SCIDAR (SCIntillation Detection And Ranging) system for char-

acterising atmospheric parameters using single star scintillation is presented. As-

tronomical scintillation is the variation in apparent luminosity of a distant object,

such as a star, viewed through the atmosphere. Scintillation is caused almost exclu-

sively by small temperature variations (on the order of 0.1-1K) in the atmosphere,

resulting in index-of-refraction fluctuations. The system uses the scintillation to

characterise the three-dimensional structure of the atmosphere by estimation of the

refractive index structure constant as a function of altitude, C2
n(h). Once the refrac-

tive index fluctuation profile is obtained, other atmospheric parameters of interest

for astronomy can be derived. The instrument, based on a commercially available

250 mm diameter telescope with an imaging system at its back, was built with

the aim portability and the potential for characterising atmospheric parameters for

wide areas of the sky.

The principle of SCIDAR is discussed in this thesis. Scintillation patterns are

recorded and reduced to autocorrelation functions that are functions of C2
n(h). The

problem to retrieve the C2
n(h) profile is an ill-posed problem, meaning that a direct

inversion technique cannot be used directly due to poor conditioning of the problem.

Inverse problem resolution and especially the Tikhonov regularisation technique is

discussed. Simulations of scintillation pattern using Fresnel diffraction are made to

test the algorithm.

From the simulations, profiles have be obtained and also from real data as well.

The results retrieved for a range of different magnitudes of star, up to magnitude

3, are encouraging.
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Chapter 1

Introduction

1.1 Introduction

The Earth’s atmosphere is a turbulent medium organised in layers. The sun’s heat

warms the Earth’s surface, then heated air masses are in motion. At night, regions of

approximately the same refractive index are formed, organised in strata of turbulent

eddies. Those different eddies are changing intrinsically in time and are carried by

the wind. Astronomical scintillation is the variation in apparent luminosity of a

distant object, such as a star, viewed through the atmosphere. Scintillation is caused

almost exclusively by small temperature variations (on the order of 0.1-1 Kelvin)

in the atmosphere, resulting in index-of-refraction fluctuations. The undulation in

the atmosphere acts as a lens focussing and defocussing of the light.

The effect of the atmosphere on an observed image is to blur the image. Adaptive

optics is a technique to compensate the distortion of the wavefront introduced by

the atmosphere using deformable elements.

SCIDAR (SCIntillation Detection And Ranging) is a remote sensing technique

that uses an analysis of the scintillation to characterise the three-dimensional struc-

ture of the atmosphere by estimation of the refractive index structure constant as

a function of altitude, C2
n(h).

For imaging systems using adaptive optics, a knowledge of the turbulence from

the ground layer up to ' 20 km is of great importance. The effect of the whole

atmosphere can be quantified by the seeing (measure of the C2
n(h) integrated over all

layers of the atmosphere), which is the angular resolution of long-exposure images,

but such a quantity is not enough. The seeing is related to the coherence length of

the wavefront, the Fried parameter r0. Other parameters, such as the isoplanatic
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angle θ0, the angular distance on the sky over which wavefront distortions are

correlated, can be found as a weighted integration over C2
n(h). The wind speed of

the layers can be retrieved from SCIDAR instrument as well giving the coherence

time of the turbulence useful for interferometric system. Atmospheric profilers such

as SCIDAR are very useful for the characterisation of astronomical sites[63, 31],

interferometry and (multi-conjugate) adaptive optics systems performance[26, 30].

The SCIDAR technique records scintillation patterns that are reduced to auto-

correlation functions that are functions of C2
n(h). The solution, or inverse problem,

is not well-posed, meaning that a direct inversion is really sensitive to noise. A

solution can be approximated by a regularisation technique. The reconstruction of

the profile depends on the assumed noise statistics and the available object prior

information.

In this thesis we describe the principle of single star SCIDAR, a technique de-

rived from the double star SCIDAR using a single star as a source. Arguments

for the feasibility of the technique can be found in an unpublished paper of Klück-

ers [48], and in the Ph.D thesis of R. A. Johnston[44]. The aim of the project is

to build and demonstrate the feasibility of generalised single star SCIDAR. The

instrument is a 25 cm telescope with an imaging system at its back conjugating

sequentially to 5 pupil heights. The conjugation to the required pupil heights the

camera is moved by means of a stepper motor controlled stage laterally along the

optical axis of the system. The single star SCIDAR instrument was designed and

constructed by Derek Coburn[18, 19, 17], a researcher in Applied Optics Group, in

consultation with myself and Prof. Dainty. In order to retrieve the C2
n(h) profile

from the autocovariance functions an inverse problem has to be solved. Simulations

of scintillation pattern (forward problem) using Fresnel diffraction are made. An in-

version program is written for the reduced autocovariance functions using Tikhonov

regularisation. Finally the program has been tested on real data.

1.2 Thesis organisation

Chapter 2 gives an introduction to Fourier optics and randomness. That is mo-

tivated by the fact that atmosphere is a changing medium thus expressions are
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treated statistically. The notion of convolution is an important concept in at-

mospheric optics and correlation is the key concept for SCIDAR instrument and

turbulent profilers in general.

Chapter 3 treats atmospheric turbulence properties for astronomy that were stud-

ied by Fried and Kolmogorov providing quantities of interest. The concept of double

star SCIDAR [73] will be laid out then the principle of the single star SCIDAR will

be introduced.

Chapter 4 introduces the tools for retrieving the C2
n(h) profile. The inverse prob-

lem will be treated and more especially the Tikhonov regularisation technique.

Chapter 5 describes the single star SCIDAR system, and the data processing

used to reduce the scintillation images to autocorrelations.

Chapter 6 describes the simulations using Fresnel diffraction of wave propaga-

tion through atmospheric turbulence to obtain scintillation patterns for the single

star SCIDAR technique.

Chapter 7 presents results of C2
n(h) profiles obtained from the simulated data

and from real data gathered during a campaign at the Observatorio del Roque de

los Muchachos, on La Palma island.

Chapter 8 gives the conclusions of the work of this thesis.

Appendix A gives properties of Hilbert spaces and L2 spaces used for the inverse

problem.
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Statement of originality

The material in this thesis has not previously been submitted for a degree or diploma

in any university. To the best of my knowledge and belief, the thesis contains

no material previously published or written by another person, except when due

reference is made in the text.



Chapter 2

Mathematical background

This chapter presents some mathematical background in Fourier optics, linear sys-

tems and the theory of random processes.

2.1 Fourier optics

Real-world objects can be represented by functions. We will consider only scalar-

valued functions. We shall use the symbol f(r) to represent an object, where r is

one or more spatial coordinates and possibly time. The functions represent different

quantities such as temperature, index of refraction, phase, amplitude complex of a

field or the irradiance.

2.1.1 Fourier transform

The one dimensional Fourier transform of a function f(x) of the real variable x,

denoted F (u), f̃(u), or F{f(x)}, is defined by

f̃(u) =

∫ +∞

−∞
f(x)e−2iπuxdx (2.1)

where u is frequency. The inverse Fourier transform of f̃(u), is defined as

f(x) = F−1{f̃(u)} =

∫ +∞

−∞
f̃(u)e+2iπuxdx (2.2)

The definitions Eq.(2.1) and Eq.(2.2) are meaningful if the function f(x) is ab-

solutely integrable ie,
∫ +∞
−∞ |f(x)|dx < ∞ and any discontinuities of f(x) are not

infinite. The presence of the integral in the two definitions, raises the existence

conditions of such transform. There is a set of sufficient conditions[34], with the
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different sets of conditions where f must be integrable and f must have no infinite

discontinuities. Consider a function f(x) that is square integrable, meaning its L2

norm exists (i.e. f lies in a Hilbert L2 space (section 4.1 for more details on Hilbert

space) ‖ f ‖2=
[∫ +∞
−∞ |f(x)|2dx

] 1
2

< ∞. This condition is sufficient.

However physical realizability is a valid sufficient condition for the existence of

a Fourier transform[13].

2.1.1.1 Some properties of the Fourier transform

Consider two functions f(x) and h(x), and their respective Fourier transforms f̃(u)

and h̃(u).

Symmetries

F{f(−x)} = f̃(−u) (2.3)

F{f ∗(x)} = f̃ ∗(−u) (2.4)

F{f ∗(−x)} = f̃ ∗(u) (2.5)

F{f̃(u)} = f(−x) (2.6)

The star on the function means complex conjugate.

Linearity theorem

The Fourier transform is a linear operation. For α and β, two scalars.

F{αf(x) + βh(x)} = αF{g(x)}+ βF{h(x)} (2.7)

Similarity theorem

For a real and positive

F{f(ax)} =
1

a
f̃(

u

a
) (2.8)

If you squeeze in one space you stretch in the other one, and vice-versa.
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Shift theorem

F{f(x− a)} = f̃(u)e−2iπua (2.9)

We have the Fourier transform of the unshifted function, f̃(u), multiplied by a com-

plex exponential. The modulus stays the same, but a linear phase factor appears.

Parseval’s theorem

∫ +∞

−∞
|f(x)|2dx =

∫ +∞

−∞
|f̃(u)|2du (2.10)

This theorem states that the energy is conserved between the two spaces. We can

define, as well, the generalised Parseval’s theorem

∫ +∞

−∞
f(x)h∗(x)dx =

∫ +∞

−∞
f̃(u)h̃∗(u)du (2.11)

2.1.1.2 Circular symmetric functions

Previously the Fourier transform was defined for one variable x. For a two dimen-

sional or three dimensional variables r (time as well can be added) the definition

of the Fourier Transform is modified with an integration over the other dimensions.

The properties above still hold.

f̃(ρ) =

∫ +∞

−∞
f(r) e−2iπρ · rdr (2.12)

where ρ is a multidimensional frequency. For a rotationally symmetric function f(r)

we can write it as f(r = |r|) we can define another transform called, the Hankel

transform defined as follows

H{f(r)} = 2π

∫ +∞

0

rf(r)J0(2πrρ)dr, (2.13)

where ρ = |ρ| and J0 is the Bessel function of the first kind and of zero order.

J0(z) =
1

π

∫ π

0

e−iz cos θdθ (2.14)
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2.1.2 Fourier transform of some functions

2.1.2.1 Circle function

The circle function is defined as

circ(r) =





1 r < 1

1
2

r = 1

0 otherwise

(2.15)

where r =
√

x2 + y2. Its Fourier transform is given by

c̃irc(ρ) = 2π
J1(2πρ)

2πρ
(2.16)

J1 is the Bessel function of the first kind of first order.

2.1.2.2 Gaussian function

A normalised two dimensional Gaussian with a variance σ2 is written

gaus(r) =
1

2πσ2
exp(− r2

2σ2
) (2.17)

The we can show that the Fourier transform is given by

g̃aus(ρ) = exp(− 2π2σ2ρ2) (2.18)

It is also a Gaussian.

2.1.3 Convolution and correlation

The one dimensional convolution of two functions f(x) and h(x), denoted f ∗ h,

[f ∗ h](x), c(x) or f(x) ∗ h(x), is defined by

c(x) =

∫ +∞

−∞
f(x′)h(x− x′)dx′ (2.19)

=

∫ +∞

−∞
f(x− x′′)h(x′′)dx′′ (2.20)

The two definitions reflect the commutative property of the convolution. We can

note the reversal ((x− x′) instead of (x′− x)) that makes the substitution possible,

in contrast to correlation (section 2.1.3.2).
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2.1.3.1 Convolution theorem

Consider two functions f(x) and h(x), and their respective Fourier transforms f̃(u)

and h̃(u). The convolution theorem states:

F{f(x) ∗ h(x)} = f̃(u) h̃(u) (2.21)

The convolution in the direct space corresponds to a multiplication in the Fourier

space, and vice versa. The Fourier transform of a convolution equals the product

of the transforms.

The one dimensional correlation (called sometimes cross-correlation) of two

functions f(x) and h(x), denoted f(x) ? h(x) is defined by

f(x) ? h(x) =

∫ +∞

−∞
f(x′)h∗(x′ − x)dx′ =

∫ +∞

−∞
f ∗(x + x′′)h(x′′)dx′′ (2.22)

The five-pointed star, or pentagram, denotes correlation. There is no reversal com-

pared to the convolution. One thing to notice is the correlation is not commutative,

unlike the convolution. f(x) ? h(x) does not necessarily equal h(x) ? f(x). The link

between (cross) correlation and convolution[10, 13] is the following:

f(x) ? h(x) = f ∗(−x) ∗ h(x) (2.23)

In the case of statistical fluctuations of the electromagnetic wave, due to incoherent

source or atmosphere turbulence, quantities such as correlation can be expressed

as an ensemble average over all possible realisations. When we consider random

variables, the average < f(u)h∗(u − x) > is used instead of the infinite integral,

and this will be discussed later in this chapter. We can consider the case of the

correlation of the same function with itself. The autocorrelation is then

f(x) ? f(x) = f ∗(−x) ∗ f(x) (2.24)

Autocorrelation can be shown to be maximum at the origin, i.e. x = 0.

2.1.3.2 Autocorrelation theorem

Consider the function f(x) and its Fourier transform f̃(u). Using the Fourier trans-

form property

F{f(x) ? f(x)} = |f̃(u)|2 (2.25)
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2.1.4 Energy and power spectra

The three dimensional energy spectrum, or spectral density Φ, of the wave function

f(r) is defined by

Φ(ρ) = |f̃(ρ)|2 (2.26)

It is the square modulus of the Fourier transform of the wave function. Thus, the

phase information is lost, for a complex wave function.

The power spectrum (a statistical quantity) is the ensemble average of the energy

spectrum

Φ(ρ) =< |F{Ψ(r)}|2 > (2.27)

By looking at Eq.(2.25), we can see that the Fourier transform of the statistical

autocorrelation of wave function is the power spectrum.

2.1.5 Sampling theorem

The sampling theorem states that a bandlimited function, i.e. a function whose

Fourier transform is zero for |f | > fmax, if it is to be fully specified, must be sampled

at a rate greater than twice the maximum frequency fs > 2fmax. Equivalently the

sampling interval must be δx ≤ 1
2fmax

2.2 Linear system theory

Physical processes may be modelled by linear systems theory. If f(x, y) denotes the

input of the system, the output g(x, y) is given by

g(x, y) = Sf(x, y), (2.28)

where S is the operator of the system. A linear system obeys the principle of

superposition, that is the response to an input decomposed into a sum of elementary

functions, is equal to the sum of the responses to each elementary input functions.

S
(∑

j

cj fj(x, y)

)
=

∑
j

cj Sfj(x, y) (2.29)
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2.2.1 Point spread function

Let consider an optical system, which is linear in intensity (incoherent imaging) or

complex amplitude (coherent imaging). Let us keep the general case where the sys-

tem can be shift-variant (space-variant) or shift-invariant (space-invariant). f is the

function representing the two dimensional object and g is the function representing

the two dimensional image. f and g are assumed to be square integrable. Then,

the functions lie in L2 and

g(r) =

∫ +∞

−∞
h(r, r′)f(r′)dr′ (2.30)

or in operator form

g = Hf (2.31)

We can decompose the object function f in elementary elements. Those elements

are the delta functions, δ, that can be regarded as basis functions for the L2. If

we know the response for an elementary element we know it for the whole object.

The resultant field for a elementary element (delta function) is called the impulse

response function or point spread function (PSF) in optics.

h(r, r0) =

∫
h(r, r′)δ(r′ − r0)dr

′ (2.32)

2.2.1.1 Shift-invariant systems

In optical imaging, a shift-invariant (stationary) optical system is usually called

isoplanatic. Isoplanicity requires that the point spread function is the same for

all field angles. In practice, a system can be defined to be isoplanatic only over a

region where the aberrations are sensibly constant. For a shift-invariant system,

h(r, r′) only depends on the difference between the two points r and r′. The image

h(r, r′) of a point source located at r′ is translated by r′ of the image h(r,0) of a

point source located at the origin of the object plane. h(r, r′) = h(r− r′,0), where

the zero second argument can be dropped to become h(r − r′). The point spread

function (PSF) is then defined as

h(r) =

∫ +∞

−∞
h(r− r′)δ(r′)dr′ (2.33)

Then, Eq.(2.30) becomes a convolution

g(r) =

∫ +∞

−∞
h(r− r′)f(r′)dr′ (2.34)
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We can write it in the convolution formalism discussed above as

g(r) = f(r) ∗ h(r) (2.35)

In Eq.(2.35), f , g represent either intensities (incoherent imaging) or complex am-

plitudes (coherent imaging).

2.2.2 Transfer functions

The transfer function of a linear isoplanatic system is the Fourier transform of the

point spread function, h̃(ρ).

TF(ρ) = h̃(ρ) (2.36)

The optical transfer function (OTF) is defined as the normalised transfer function.

OTF(ρ) =
h̃(ρ)

h̃(0)
(2.37)

A property of the Fourier transform, is that if the function f is real, its Fourier

transform f̃ is Hermitian. The modulation transfer function (MTF) is defined as

the modulus of the optical transfer function.

MTF(ρ) =
|h̃(ρ)|
h̃(0)

= |OTF(ρ)| (2.38)

The MTF expresses the ratio of the output modulation to the input modulation.

MTF(ρ) =
Mg

Mf

(2.39)

where Mf is the modulation of the function f defined as,

Mf =
fmax − fmin

fmax + fmin

(2.40)

For incoherent imaging, the OTF of the optical system is given by the autocorrela-

tion of the pupil function, P (r). OTFP (ξ = r
λ fT

) = P (r) ∗ P ∗(−r), where fT is the

focal length.

2.3 Random variables

In this section we will consider random variables, i.e. variables that are the results of

some non-deterministic process or experiment. A random variable can be continuous
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(taking values over a continuous range such as intensity of atmospherically induced

scintillation) or discrete (taking values from a discrete set such as photon counts in

a detector).

2.3.1 Probability functions

The probability of a random variable, X, to have a value less or equal to a specific

value x is given by

FX(x) = Pr(X ≤ x) (2.41)

where Pr(.) is the probability and F(.) is the cumulative distribution function (cdf)

of the random variable X. We can define the probability for X to be between

the values x and x + dx, dropping the subscript notation X in the cumulative

distribution function,

Pr(x < X ≤ x + dx) = F(x + dx) − F(x) (2.42)

The probability density function is defined as the derivative of the cumulative den-

sity function at the points where the derivative exists

p(x) =
d F(x)

dx
almost everywhere. (2.43)

p(x)dx is the probability that the random variable X lies between x and x + dx.

Properties of the probability density function

1. p(x) is positive; p(x) ≥ 0

2. p(x) is normalised;
∫ +∞
−∞ p(x) dx = 1

If we consider now, instead of a continuous random variable, a discrete random

variable, x with a set of realisations (outcomes) {x1, x2, ..., xM} or a countably

infinite set {xi, i = 1, ...,∞}, the cumulative density function is the following

F(x) =
∑
xi≤x

p(xi) δ(x− xi) (2.44)
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2.3.2 Moments

The expectation value of a continuous random variable x, also called the mean,

denoted < x >, x or E{x} is defined by

E{x} =< x >= x =

∫ +∞

−∞
x p(x) dx (2.45)

E and <> denote the statistical expectation operator or the ensemble average. For

a discrete random variable x the mean is defined by

E{x} =
∑

i

xi Pr(xi) (2.46)

We can define general higher order moments, E{xn}, or < xn >

E{xn} =< xn >=

∫ +∞

−∞
xn p(x) dx (2.47)

2.3.2.1 Central moments

We can define moments that are centred around the mean, x.

E{(x− x)n} =< (x− x)n >=

∫ +∞

−∞
(x− x)n p(x) dx (2.48)

An important parameter is the second order central moment called variance, often

denoted σ2, which is a measure of the spread of the random variable around its

mean.

σ2 = Var{x} = E{(x− x)2} =

∫ +∞

−∞
(x− x)2 p(x) dx (2.49)

One can show that

σ2 =< x2 > − < x >2 (2.50)

Note that the variance is the square of the standard deviation, σ.

2.3.3 Joint probability

We can consider the probability of two events A and B both occurring. The corre-

sponding joint probability is denoted Pr(A∩B) or Pr(A,B). The intersection of out-

comes between event A and B is the same as that between B and A (commutativity).

If the random variables are statistically independent the joint probability becomes
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the product of the probabilities of the two variables. Pr(B, A) = Pr(A) Pr(B). The

two-dimensional cumulative distribution function is written

F(x, y) =

∫ x

−∞

∫ y

−∞
p(x′, y′)dx′dy′ (2.51)

p(x, y) =
∂2

∂x∂y
F(x, y) (2.52)

In the case of two statistically independent, the joint PDF and the joint cdf of the

two random variable are equal to their product, as in the case of the probability.

2.3.4 Joint moments

The joint moments of two random variables x and y and denoted < xnym > are

defined by

< xnym >=

∫ +∞

−∞

∫ +∞

−∞
xnym p(x, y) dx dy (2.53)

The first joint moment is the correlation of the two variables

< xy >=

∫ +∞

−∞

∫ +∞

−∞
x y p(x, y) dx dy (2.54)

The covariance is the first order central joint moment.

< (x− x)(y − y) > =

∫ +∞

−∞

∫ +∞

−∞
(x− x)(y − y) p(x, y)dxdy

= < xy > − < x >< y > (2.55)

With the two equations, we can define the correlation coefficient, which is the

normalised covariance.

ρ =
< (x− < x >)(y− < y >) >

σx σy

(2.56)

The correlation coefficient lies between 0 and 1.

2.3.5 Conditional probability and Bayes’ rule

We can consider the probability of an event A has occurred considering event B has

occurred. We can say conversely, what is the probability of event A, given event B

occurred. The probability is denoted Pr(A|B) and is defined as

Pr(A|B) =
Pr(A,B)

Pr(B)
, (2.57)
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if Pr(B) 6= 0. This can be written as

Pr(A,B) = Pr(B) Pr(A|B) (2.58)

Pr(A|B) is a probability a posteriori. It needs the knowledge first of the prior

probability Pr(B) of B. The conditional probability Pr(A|B) is in general different

from the probability a priori Pr(A). Those two probability can be related, express-

ing the conditional probability, Pr(B|A), of event B given event A occurred. As

Pr(A,B) = Pr(B,A) = Pr(A) Pr(B|A), it comes

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)
(2.59)

Eq.(2.59) is Bayes’ rule.

2.4 Random processes

We consider now a process that has a set of outcomes to be described, where each

outcome is a random variable in time or space, or both. Let f be a M -dimensional

random vector, constituted of M scalar random variables, f = {fi, i = 1, ..., m}.
each fi take values in (−∞, +∞). If the random variable is continuous, it becomes

f(r) where f is a function with different realisation at point r. The variable r can

represent time, space or both unless it is stated. The value of a random process at

one point is a random variable. Moments are defined as follows

E{[f(r)]n} =< [f(r)]n >=

∫ +∞

−∞
[f(r)]n p[f(r)] df(r) (2.60)

2.4.1 Multiple-point expectations

The expectation for two points is given by

E{f(r1)f(r2)} =< f(r1)f(r2) >=

∫ +∞

−∞

∫ +∞

−∞
f(r1)f(r2) p[f(r1), f(r2)]df(r1)df(r2),

(2.61)

where f(r1) and f(r2) are two random variables and p[f(r1), f(r2)] is their joint

density.
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2.4.2 Covariance and correlation

For the continuous case of two random processes f(r) and g(r′) we talk about the

cross-correlation function defined as

Rfg(r, r
′) =< f(r)g∗(r′) > (2.62)

The cross-covariance function is defined as

Kfg(r, r
′) =< [f(r)− < f(r) >][g∗(r′)− < g∗(r′) >] >= Rfg(r, r

′)− f(r)g∗(r′)

(2.63)

In the atmospheric case, we often consider the autocorrelation or the autocovariance,

and an important function for the study of the fluctuations of different quantities.

The autocorrelation function of a random process f(r) is defined by

Rf (r1, r2) =< f(r1)f
∗(r2) > (2.64)

The autocovariance is defined by

Kf (r1, r2) = < [f(r1)− < f(r1) >][f ∗(r2)− < f ∗(r2) >] >

= Rf (r1, r2) − f(r1)f
∗
(r2) (2.65)

We find for r1 = r2 = r the variance defined by

Kf (r, r) =< |[f(r)− < f(r) >]|2 >= Rf (r, r) − |f(r)|2 (2.66)

For the discrete case we speak about the covariance matrix, which is the general-

ization of a univariate variance.

Kij =< (fi − f i)(fj − f j)
∗ >, (2.67)

where the asterisk indicates the complex conjugate, in the case of f being complex.

The diagonal elements of the covariance matrix, Kii are the variances σ2
i .

Kii = Var{fi} =< |fi − f i|2 > (2.68)

2.4.2.1 Stationarity, isotropy and ergodicity

The atmosphere provides neither homogeneous (spatial-stationarity) nor isotropic

random variables (first-order temporal and spatial statistics), but we can assume a

local isotropy and stationarity, over a region comparable to the outer scale L0[67].

Temporally, the functions f(r) can be assumed to be stationary over time increments

or stationary increments[35], for some restricted time period.
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2.4.2.2 Stationarity

Stationarity in the wide sense requires that the mean and autocorrelation have no

preferred origin, that is the mean is a constant and the autocovariance Eq.(2.64)

depends on the vector difference of the coordinates.

< f(r) >= f ; (2.69)

R(r1, r2) = R(r1 − r2); (2.70)

If all n point probability distribution functions at a fixed time or position are

the same for all times or positions, the process is said strictly stationary. It is

more restrictive than wide-sense stationarity. We can write the autocorrelation and

autocovariance Rf/Kf (r1, r2) = Rf/Kf (r1− r2) = Rf/Kf (∆r). In the atmospheric

literature the autocorrelation Rf (∆r) is often denoted as Bf (∆r).

Kf (∆r) =< [f(r)− < f(r) >][f ∗(r + ∆r)− < f ∗(r + ∆r) >] > (2.71)

Atmospheric turbulence is a random process where turbulence induced pertur-

bations are often assumed to be wide sense stationary.

The autocorrelation is related to the power spectrum by a Fourier transform

relation by the Wiener-Khintchine theorem defined as

Φ(u) = F{R(∆x)} =

∫ +∞

−∞
< f(x)f ∗(x + ∆x) > e−2iπu∆xd∆x (2.72)

2.4.2.3 Isotropy

Isotropy implies a symmetry in rotation where the spatial statistical quantity de-

pending on the vector r can be represented by the modulus r = |r|. If the process is

stationary, the autocovariance or autocorrelation between two points in space will

only depend on the modulus of the separation vector.

2.4.2.4 Ergodicity

A stationary random process is said to be ergodic if ensemble averages can be re-

placed by time averages. This implies that such realisation contains all the essential

statistical parameters of the whole process.
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2.4.3 Some distributions

2.4.3.1 Normal distribution

We consider a continuous random vector g ∈ RM (RM is the N-dimensional vector

space of real numbers). The normal (Gaussian) multivariate normal PDF of a vector

g is written

p(g) =
[
(2π)Mdet(K)

]− 1
2 exp

[
−1

2
(g − ḡ)tK−1(g − ḡ)

]
(2.73)

where K is the M × M covariance matrix of g defined in Eq.(2.67) and where

ḡ = (ḡ1, ..., ḡp) is the vector of means. The subscript t denote the transpose and ḡ

is the mean vector of g. If f is real, K is a symmetric matrix and a positive definite

matrix.

2.4.3.2 Poisson distribution

A Poisson probability of a random vectors is applicable for random variables that

are all independent. The Poisson probability for a discrete random vector is given

by g = g1, ..., gM with independent components has the form

Pr(g) =
M∏
i=1

e−ḡi
(ḡi)

gi

gi!
, (2.74)

where ḡi, i = 1, ..., n represent the mean (or the variance that equals the mean for

Poisson probability).

2.4.3.3 Log-normal distribution

A variable g is log-normal distributed if its natural logarithm ln(g) is normally

distributed. The distribution is

p(g) =
[
(2π)Mg2det(K)

]− 1
2 exp

[−1

2
(ln(g)− (ln(g)) )tK−1(ln(g)− (ln(g)) )

]

(2.75)

if we consider a one dimensional variable the distribution is

p(g) =
1√

2πσln gg
exp

[
−1

2

(ln g − ln(g) )2

σ2
ln g

]
(2.76)

The mean of a one dimensional variable log-normal distributed is given by

g = exp

(
2 ln(g) + σ2

ln g

2

)
(2.77)
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and the variance is given by

Var{g} = exp
(
ln(g) + σ2

ln g)
) (

exp σ2
ln g − 1)

)
(2.78)



Chapter 3

Atmospheric optics

In this chapter, atmospheric turbulence properties will be discussed. The intensity

fluctuations of the light induced by refractive index fluctuations of the atmosphere

(scintillation) will be treated before discussing the concept of a remote turbulent

profiler based on scintillation patterns to quantify the values of the refractive index

fluctuations of the atmospheric layers.

3.1 Atmospheric turbulence

The wavefront from starlight is distorted by atmospheric turbulence, due to random

fluctuations of the refractive index of the air of the atmosphere. The optical strength

of the atmospheric refractive index fluctuations, C2
n(h), determine the contribution

of the effect on the wavefront. The fluctuations of the refractive index, depending

on temperature, will cause random optical path length of the atmosphere in time

and and in space. The sun’s heat warms the Earth’s surface, then heated air masses

are in motion. At night, regions of approximately the same turbulence strength are

formed, organised in strata of turbulent eddies. Large turbulent eddies, having a

unique temperature, are dissipated in smaller eddies in a random and continuous

way.

3.1.1 Structure of the atmosphere

The Earth’s atmosphere is divided into several layers, characterised by their vertical

distribution of temperature (Fig. 3.1). The portion of the lower atmosphere is called

the troposphere. The troposphere is the most active region with a pronounced wind
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motion, rich in water vapour and clouds, wherein the temperature is decreasing

fairly regularly with respect to the altitude. Its size varies according to latitude,

going from 7 km at poles up to 20 km at the equator. It is in this portion of the

atmosphere that most of the weather occurs. There is a buffer zone named the

tropopause, then starts the middle atmosphere including the stratosphere, where

the temperature increases, up to about 50 km height and the mesosphere, where the

temperature decreases. Beyond is the high atmosphere, formed by the thermosphere

and the exosphere, characterised by an increasing temperature. We can consider

that the Earth’s atmospheric layer does not go above 1500 km. Weather phenomena

occur in the troposphere and the lower stratosphere. With the fast decrease of the

atmospheric pressure with the altitude, we can consider that 90% of the atmospheric

mass is located under 16 km, and the 99% of it is under 30 km.

Lower atmosphere

High atmosphere

Middle atmosphere

50km

80km

7km-17km

Thermosphere T 

Troposphere T 

Mesosphere T 

Exosphere T 

Stratosphere T 

Fig. 3.1: Structure of the atmosphere.
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3.1.2 Turbulent zones

Within the troposphere (tropo- comes form Greek meaning “turning”), the bottom

layer, in contact with the surface of the earth, is called the atmospheric boundary

layer (abbreviated BL, named also the ground layer (GL)). The horizontal forces

of friction with the Earth’s relief, acting on the air movement that would keep the

balance of the wind between the Coriolis force and the horizontal pressure gradient,

modify the displacements and the exchanges of energy and mass within a layer thick

of about 1500 m. An even lower layer, part of the boundary layer, exists called the

surface (boundary) layer (SL), where the interactions between the surface and the

wind are the strongest; its thickness is about 30 m. Ground-air friction is stronger

where wind shear generate mechanical turbulence exceeding buoyant forces, and a

differential temperature is present too due to warming during day time and cooling

during night time. Above the atmospheric boundary layer is the free atmosphere

(FA) where the effect of the surface friction on the air motion becomes less impor-

tant. The dynamics are more complicated and turbulence depends on wind shear

and gravity waves. The boundary layer is a big contribution of atmospheric turbu-

lence. The importance of the contribution of the turbulence in the ground layer is

significant, on the order of 60% found in different observatories[71].

Surface (Boundary) Layer

Free Atmosphere

Atmospheric Boundary Layer

∼1500m

average of ~30m

Fig. 3.2: Turbulent zones in the atmosphere.
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3.1.3 Statistics of refractive index fluctuations

The effects of turbulence on imaging are important to understand in order to be

able to model image formation, adaptive optics, etc. Consequently, the statistics

of spatial and temporal structure of atmospheric turbulence are important. The

understanding of turbulence is derived from fluid motion study. A fluid is laminar

when the flow is smooth, regular and organised in parallel layers with few exchanges

between them. The velocity inside the layers is constant. When the average velocity

becomes higher, a fluid is turbulent. It shows irregularities in time and space. The

fluid parcels deviate from the mean flow, with no apparent preferential direction

or velocity, with a tendency to mix, becoming unstable and random. The fluid’s

behaviour is not predictable any more, and a statistical approach is needed to de-

scribe it. The dimensionless Reynolds number, R based upon geometrical structure

of the flow, characterises the condition of the fluid between laminar and turbulent:

R =
V0 L0

νo

, (3.1)

where V0 is a characteristic velocity, L0 a characteristic size of the flow and ν0

is the kinematic viscosity of the fluid. When the value of the Reynolds number

exceeds a critical value, typically included between 1000 and 2000, the fluid becomes

turbulent. In the atmosphere, typical values for air flow are; ν0 = 15× 10−6 m2s−1,

V0 = 1ms−1 and L0 = 15m, which gives a Reynolds number R = 106. It is much

greater than the critical value, which corresponds to a fully developed turbulence,

and the atmosphere is considered to be always turbulent.

The most common model to describe the atmosphere is the Kolmogorov model[50].

3.1.3.1 Kolmogorov law

Kolmogorov assumed that the velocity fluctuations can be represented by a locally

homogeneous and isotropic random field for scales less than the largest eddies or

the energy source. In fully developed turbulence, the kinetic energy of large scale

motions is transferred to smaller and smaller scale motions. Motions on a small

scale are statistically isotropic. Motions at scale L have a characteristic velocity V .

When the Reynolds number R becomes small enough, the break up process stops

and the kinetic energy is dissipated into heat by viscous friction. In a stationary

state, the rate ε0 of viscous dissipation must be equal to the rate of production of
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turbulent energy. A cascade of energy occurs form large scale size to smallest. The

largest turbulent eddies have characteristic size L0 called the external or outer scale,

while the dissipation into heat happens for a scale size l0 called the inner scale. The

Kolmogorov law is valid within the inertial range included between l0 and L0.

In the spectral domain the kinetic energy E(κ), with κ =
√

κ2
x + κ2

y + κ2
z the

spatial wave number (modulus of vector spatial wave vector κ) can be expressed,

by a dimensional reasoning, by

E(κ) ∝ κ−
5
3 . (3.2)

Eq.(3.2) is valid in the inertial range 2π
L0
≤ κ ≤ 2π

l0

L0 is the outer scale (typically some tens of metres) and l0 the inner scale (a few

millimetres), with κ = |κ|. The 3D power spectrum is also described by

Φ(κ) ∝ κ−
11
3 , (3.3)

where κ =
√

κ2
x + κ2

y + κ2
z

Plan  Wavefront  

Wavefront  after propagation through atmosphere

L0 Outer  Scale

l0 Inner  Scale

Fig. 3.3: Outer and inner scale.

Scalar quantities additive of the turbulent flow, passive (not affecting the dy-

namic of the medium) and conservative (not disappearing by chemical reaction),
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like the temperature T and humidity C follow Kolmogorov law[56]. Let us call a

scalar quantity following the Kolmogorov law as qK =< qK > +q̃K ; it follows that

ΦqK
(κ) ∝ κ−

11
3 , (3.4)

within the inertial range.

The refractive index n(r, t) can be written as the sum of a mean < n > and a

randomly fluctuating term ñ(r, t).

n(r, t) =< n > +ñ(r, t). (3.5)

For air the mean refractive index is close to unity. Refractive index variations in the

turbulent atmosphere arise mainly from temperature inhomogeneities. It is common

to refer to the refractive index inhomogeneities as turbulent eddies which can be seen

as pockets of air with a characteristic refractive index. At optical wavelengths, the

dependence of the refractive index of air upon pressure and temperature, following

the Gladstone law, is given by

ñ = −77.6P

T 2
10−6 T̃ , (3.6)

where T is the temperature and T̃ the temperature fluctuation in Kelvin, and P is

the pressure in millibar. From Eq.(3.6) the power spectrum of the refractive index

fluctuations follow as well the Kolmogorov law, Eq.(3.3).

Expressing the covariance BqK
(∆r) as defined in Eq.(2.71)

BqK
(∆r) =< [qK(r)− < qK(r) >][qK(r + ∆r)− < qK(r + ∆r) >] > (3.7)

The covariance of the fluctuating part q̃K is related to the power spectrum of the

same fluctuating part denoted ΦqK
, according to the Wiener-Khintchine theorem

by

BqK
(∆r) =

∫ ∞

−∞
ΦqK

(κ)eiκ ·∆rdκ. (3.8)

For a quantity following the Kolmogorov law, the power spectrum, ΦqK
(κ) Eq.(3.4)

(being at the power minus eleven thirds) is not well behaved at the origin and the

autocorrelation does not exist. Tatarskii[67] introduced a function D, the structure

function, related to the covariance, describing the mean squared fluctuation between

two points separated by ∆r :

DqK
(∆r) =<| qK(r + ∆r)− qK(r) |2>, (3.9)
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where <> denotes the ensemble average.

The structure function is related to the covariance BqK
(when the covariance exists),

by

DqK
(∆r) = 2[BqK

(0)−BqK
(∆r)], (3.10)

The structure function of the temperature[56] and then by extension, all the

quantities following Kolmogorov law can be expressed as

DqK
(∆r) = C2

qK
(∆r)

2
3 , (3.11)

where C2
qK

is the structure constant of the fluctuations.

The power spectrum of the refractive index fluctuations becomes [67]

Φn(κ) = 0.033 C2
nκ−

11
3 , (3.12)

where κ =
√

κ2
x + κ2

y + κ2
z, and lies in the inertial range.

C2
n is the structure constant of the refractive index fluctuations, with units in m− 2

3 .

It characterises the optical energy of the turbulence and it measures the atmospheric

turbulence contribution for a wave propagating through it. The typical values

go from 10−13m− 2
3 for strong turbulence to 10−17m− 2

3 for weak turbulence. The

structure constant of the refractive index fluctuations actually varies with altitude

h of the turbulent layer, C2
n(h). Then the Kolmogorov spectrum is written

Φn(κ) = 0.033 C2
n(h)κ−

11
3 , (3.13)

Note that just a single function C2
n(h) fully characterises the spatial properties of

atmospheric turbulence. There are other models to describe atmospheric turbu-

lence, that can be extended outside the inertial range. The modified Von Kármán

spectrum takes into account the outer and inner scale. Introducing κ0 = 2π
L0

and

κm = 5.92
l0

, the Von Kármán spectrum[23] is an empirical formula that rolls off the

Kolmogorov spectrum at low and high frequencies, given by

ΦVK
n (κ) =

0.033 C2
n(h)

(κ2 + κ2
0)

11
6

e
− κ2

κ2
m , (3.14)

The role of inner scale is to reduce the value of ΦVK
n (κ) compared to Φn(κ) for

wave numbers bigger than the upper limit 2π
l0

. The outer-scale has an effect for lower

wave numbers. For wavefront sensing the outer scale is usually of great importance.



Chapter 3. Atmospheric optics 29

L0 can impact adaptive optics for the new generation of extremely large telescope

designs[52, 20]. When considering scintillation, particularly strong scintillation, the

inner scale becomes more significant[22].

The Kolmogorov model is the most common model used for scintillation. In this

dissertation the Kolmogorov law will be used.

C2
n(h) varies with both height above the ground and local atmospheric conditions[35].

Given the refractive index fluctuation profile C2
n(h) we can derived quantities of in-

terest for astronomy related to the n-th order moments, M(n) defined as

M(n) =

∫ ∞

0

hnC2
n(h) dh, (3.15)

where n may be fractional.

We can derive other quantities of interest for astronomical imaging from these

moments, such as the turbulence coherence length defining long-time average image

quality r0, called the Fried parameter, related to M(0), or the isoplanatic angle ϑ0,

related to M(5
3
), representing the angle within which we can consider that light

propagates through the same optical path in turbulent layers:

r0 =


0.423k2 sec Z

∞∫

0

dhC2
n(h)



− 3

5

(3.16)

ϑ0 =


2.905k2(sec Z)

8
3

∞∫

0

h
5
3 dhC2

n(h)



− 3

5

(3.17)

where k = 2π
λ

is the optical wavenumber and Z is zenith distance.

The long-exposure full width at half the maximum (FWHM) of the atmospheric

optical transfer function, called seeing, is limited by the Fried parameter r0. The

seeing is given

β = 0.98
λ

r0

(3.18)

Typical seeing values in good astronomical sites are around 0.8 arcsec, and “bad”

seeing is above 1.5 arcsec.

3.1.3.2 Atmospheric temporal statistics

The temporal dependence of n(r, t) over time has not been treated yet. In the

case of atmospheric turbulence there are two time scales, one due to the motion of
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atmosphere across the path of interest, and another one due to the dynamics of the

turbulence itself (i.e. the dynamic turbulent eddies). The advection effect (transfer

of heat by the horizontal movement of the air) can be estimated as L0

V⊥
, L0 is the

outer scale and V⊥ is the mean transverse wind speed. Taking 10 m for the outer

scale and 10 ms−1 for the wind speed, it gives a time scale of 1 s. Concerning the

other temporal effect, it arises from wind fluctuations (turn over of the turbulent

eddies). The time scale of this effect can be estimated to be 10% of the mean

wind speed, that is to say 10 s time constant[11]. Thus, by neglecting the temporal

dynamics of the eddies (taken as frozen in space) compared to the mean turbulent

flow, the temporal properties can be introduced invoking the Taylor’s hypothesis, or

the frozen turbulence hypothesis[35]. Taylor’s hypothesis assumes that over a short

time interval a given realisation of the random structure, ñ, translates with constant

transverse velocity, determined by the local wind conditions. Time differences are

then equivalent to spatial shifts. The Taylor hypothesis means that for a single

layer of turbulence, the refractive index fluctuations at a time t + τ can be related

to the refractive index fluctuations t, by

ñ(r, t + τ) = ñ(r−V⊥(τ), t), (3.19)

where V⊥ is the mean transverse velocity.

3.1.4 Propagation of light through atmospheric turbulence

As an optical field propagates through an atmospheric turbulence zone, the random

variations of the index of refraction will cause perturbations of its phase crossing a

turbulent zone. Free-space propagation will create both perturbations of the phase

and of the amplitude. We consider monochromatic planes waves, of wavelength λ,

propagating from a star at zenith towards a ground-based observer. Each point

in the atmosphere will be represented by a vector horizontal coordinate r, and an

altitude h from the ground. The field at coordinates (r, h) will be denoted by its

complex amplitude

Ψh(r) = |Ψh(r)|eiφh(r), (3.20)

where the phase φh(r) is assumed to be a real Gaussian random process with zero-

mean, < φh(r) >= 0.
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3.1.4.1 One thin layer

Consider one turbulent layer, that acts as random-phase screen, of thickness δh

chosen to be large compared to the correlation scale of the inhomogeneities but

small enough for diffraction effects to be negligible over the distance δh (thin screen

approximation)[62].Ψh+δh(r) = 1 is the layer input and after crossing of the layer of

thickness δh, the resulting complex field is

Ψh(r) = eiφ(r), (3.21)

where the phase variation, φ(r) caused by the random variations of the index of

refraction n(r, h) deduced from the optical geometry is

φ(r) = k

∫ h+δh

h

dz n(r, z), (3.22)

where k = 2π
λ

is the optical wave number

3.1.4.2 Free space propagation

Neglecting multiple scattering using the Born approximation, and since optical

wavelengths are much smaller than the scale of the observed wavefront pertur-

bation, the Fresnel approximation can be used[34] and the field on the ground due

to the field at an altitude z is

Ψ0(r) = Ψz(r) ∗ pz(r) (3.23)

The equation has the form of a convolution as in Eq.(2.35). pz(r) is the point spread

function of the Fresnel propagation, which is a shift-invariant operator, defined as

pz(r) =
1

iλz
e

iπr2

λz , (3.24)

with r = |r|. The field at the distance z is found using the expression for the point

spread function in Eq.(3.24)

Ψ0(r) = Ψz(r) ∗ 1

iλz
e

iπr2

λz (3.25)

Eq.(3.25) is the Fresnel Diffraction of the wave over a distance of propagation

z.
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3.1.4.3 Statistical properties of the field

The covariance of the phase fluctuations is defined as

Bφ(∆r) =< φ(r)φ(r + ∆r) >= k2 δh

∫ +∞

−∞
Bn(∆r, z) dz (3.26)

Using local isotropy property, the fluctuation in the z = constant plane, W (f , z)

have spectrum given by W (f , 0)[11]. The two-dimensional power spectrum of the

phase fluctuations is then

Wφ(f) = k2 δh Wn(f , 0) (3.27)

The two-dimensional power spectrum expressed with the spatial frequencies is

related to the two-dimensional power spectrum expressed with the spatial wave

number by

Φn(fx, fy, fz) = (2π)3 Φn(κx = 2πfx, κy = 2πfy, κz = 2πfz) (3.28)

where f = (fx, fy, fz) is a spatial vector frequency with dimension of an inverse

length. Then the two dimensional power spectrum of the phase fluctuations Eq.(3.27)

becomes

Wφ(f) = 9.7× 10−3k2 f−
11
3 C2

n(h)δh (3.29)

3.2 Stellar scintillation

An optical wave propagating through a random medium such as the atmosphere

will experience irradiance fluctuations called scintillation. There are many articles

describing the theory of scintillation[4, 27, 28, 29].

3.2.1 Phase and amplitude statistics

3.2.1.1 Effect of a thin layer

To describe the optical path fluctuations, the small perturbation approximation is

made (typically valid for vertical paths when the zenith angle does not exceed 60◦).

The phase fluctuation caused by a “thin” layer is taken to be very small compared

to unity, so that

φ(r) ¿ 1 (3.30)
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With this assumption, the field at the layer output given by Eq.(3.21) can be written

Ψh(r) ' 1 + iφ(r) (3.31)

The complex field at the ground is a result of a free propagation, and is given using

the Fresnel convolution Eq.(3.25)

Ψo(r) = 1 + iφ(r) ∗ 1

iλh
e

iπr2

λh (3.32)

The Fourier transform of a constant is a delta function, and the Fourier transform

of a convolution is a multiplication of the Fourier transforms. Defining the complex

quantity ε(r) as

ε(r) = φ(r) ∗ 1

λh
e

iπr2

λh (3.33)

The complex field at the ground, Ψ0(r), becomes

Ψo(r) = 1 + ε(r) (3.34)

ε defines the relative fluctuations of the complex amplitude at the ground due to

the layer at altitude h. Its real part, χ(r), describes the relative fluctuations of the

modulus |Ψ0(r)| and its imaginary part, φo(r), describes the relative fluctuations of

the phase φ(r),

χ(r) = φ(r) ∗ 1

λh
cos(

πr2

λh
) (3.35)

φ0(r) = φ(r) ∗ 1

λh
sin(

πr2

λh
) (3.36)

They both follow Gaussian statistics as the phase is Gaussian, and their power

spectra are

Wχ(f) = Wφ(f) sin2(πλhf2) (3.37)

Wφ0(f) = Wφ(f) cos2(πλhf2) (3.38)

Eq.(3.37) and Eq.(3.38) are obtained by taking the Fourier transform of ε(r). Using

the convolution theorem (Eq.(2.21)) the Fourier transform is

ε̃(f) = φ̃(f).i exp
(−iπλhf2

)
, (3.39)
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where the last term is obtained by taking the Fourier transform of a Gaussian

function (Eq.(2.18)) for σ2 = − λh
2iπ

. Then the Fourier transform of the log amplitude

and of the phase are given by

χ̃(f) = φ̃(f) sin(πλhf2) (3.40)

φ̃0(f) = φ̃(f) cos(πλhf2) (3.41)

Using the power spectrum of the phase defined in Eq.(3.29) the power spectrum

of the fluctuation are given by

Wχ(f) = 9.7× 10−3k2 f−
11
3 C2

n(h)δh sin2(πλhf2) (3.42)

Wφ0(f) = 9.7× 10−3k2 f−
11
3 C2

n(h)δh cos2(πλhf2) (3.43)

The power spectra contain, a term in f−
11
3 that come from the Kolmogorov power

law of the turbulence, the structure constant of the refractive index fluctuations

integrated on the layer C2
n(h)δh and a third term corresponding to the filtering of

Fresnel propagation.

3.2.1.2 Effect of multiple layers

When we consider multiple layers the fluctuations at ground level add linearly.

Their power spectra add also because the fluctuations are assumed to be statistically

independent[62]. The power spectra Eq.(3.42) and Eq.(3.43) become

Wχ(f) = 9.7× 10−3k2 f−
11
3

∫ ∞

0

C2
n(h) dh sin2(πλhf2) (3.44)

Wφ0(f) = 9.7× 10−3k2 f−
11
3

∫ ∞

0

C2
n(h) dh cos2(πλhf2) (3.45)

3.2.2 Scintillation statistics

Scintillation corresponds to intensity fluctuations. If the power spectrum of the

phase is taken as almost equal to the power spectrum of the relative fluctuations

of the complex amplitude (neglecting the log-amplitude), it is the near-field ap-

proximation. The near-field approximation is used for angle-of-arrival fluctuations

like adaptive optics system or the differential image motion monitor (DIMM[64])

instrument.
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Writing the complex amplitude at the ground with χ(r) and φ0(r) it becomes

Ψo(r) = 1 + χ(r) + i φ0(r) (3.46)

The intensity is, neglecting the term of second order, given by

I(r) = |Ψo(r)|2 ' 1 + 2χ(r) (3.47)

The quantity 2 χ(r) describes the relative fluctuations of the intensity. The easiest

quantity to measure is the “amount” of scintillation or the scintillation index σ2
I

defined as the variance of the relative irradiance (Intensity I) fluctuations.

σ2
I =

<< I > −I >2

< I >2
=

< I2 >

< I >2
− 1, (3.48)

where the angular brackets denote an ensemble average or, equivalently, a long-

time average.

Based on weak-fluctuation theory, Tatarskii[67] predicted that the correlation

length of the light spots (flying shadows) is proportional to the first Fresnel zone

scale
√

hλ (the small perturbation hypothesis). In second order statistics, we can

derive the power spectrum of the relative irradiance fluctuations WI(k) related to

the power spectrum of the refractive index fluctuations φn(k). Following Eq.(3.47)

the power spectrum of the relative irradiance fluctuations WI(k) is related to the

power spectrum of the relative amplitude fluctuations

WI(f) = 4Wχ(f) (3.49)

The power spectrum of the relative irradiance fluctuations using is

WI(f) = 3.9× 10−2k2f−
11
3

∫ ∞

0

dh C2
n(h) sin2(πλhf2), (3.50)

We can derive the scintillation index, which is the integral of Eq.(3.50), over fre-

quency f

σ2
I = 19.2 λ−

7
6 (cos Z)−

11
6

∫ ∞

0

h
5
6 C2

n(h) dh (3.51)

where Z is the zenith angle. For a given layer h the contribution to the scintillation

index grows as the distance of the layer get larger as the power five-sixths, h
5
6 .
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3.2.3 Wavelength dependence

The amplitude of scintillation has a dependence on wavelength of λ−
7
6 [25] (σ2

I ∝ λ−
7
6

Eq.(3.51)). The wavelength dependence is strong for small telescope aperture (at

least smaller than 20 cm[28]) and big zenith angle[16] (Z > 60◦). In broadband

averaging, no significant bandwidth dependence is noted[28]

3.2.4 Aperture filtering

When a large telescope is used, the aperture function P (r) (which can be circular,

annular, with spider or without) filters out some the high frequencies in the power

spectrum[62, 25]. The aperture has a cut-off frequency inversely proportional to its

diameter lowering the high frequency content of the power spectrum of irradiance

WI(k) and then the scintillation index is lowered. For the scintillation index it

means a lower value due to the washing out of the small details (small shadows

being washed out). The aperture filtering function is given by Fp(f) = |P̃ (f)|2 For

the case of an annular aperture, Fp the aperture filter function[81] is given by

Fp(q, f) = {
2J1(2πaf)

2πaf
− q2[2J1(2πbf)

2πbf
]

1− q2
}2 (3.52)

The two-dimensional shadow-pattern WI(f) becomes,

W F
I (f) = WI(f).Fp(f), (3.53)

where a is the aperture of the telescope, b the inner radius, f a spatial frequency, q

the ratio between the inner radius and the outer one.

3.2.5 Neglecting scintillation effects in high angular resolu-

tion techniques

Adaptive optics techniques analyse the incoming distorted wavefront with a wave-

front sensor. The Shack-Hartmann wavefront sensor divides the telescope aperture

into many smaller subapertures, and a lenslet array is used to produce multiple

spots onto a detector. The theoretical formula of the image centroid formed after

a lens include the log-amplitude of the wave. In practice, the log-amplitude is ne-

glected and the displacements of image centroids are supposed proportional to the
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average wavefront slopes over the subapertures. For adaptive optics system under

weak-turbulence conditions, taking into account the log-amplitude of the wave, and

not only the phase of the wave, would give a more accurate measurement of the im-

age centroid between 10% to 18%[76]. Scintillation affects also the quality of phase

reconstruction from Hartmann data of tip-tilt and high-order aberrations[76].

3.3 SCIDAR

The concept of the SCIDAR (SCIntillation Detection And Ranging) technique

was proposed by Vernin & Roddier in 1973[73], and followed by other approaches

over a number of years: Rocca, Roddier & Vernin 1974[61], Vernin & Roddier

1975[74],Azouit & Vernin 1980[9], Caccia et al. 1987[15]. Fuchs, Tallon & Vernin

(1994)[31] established the basis for the generalised SCIDAR, which was developed

and tested by Avila, Vernin & Masciadri in 1997[6] and finally exploited by Avila,

Vernin & Cuevas in 1998[5] and Klückers et al. 1998[49]. The first monitoring of

the velocity profiles using a generalised SCIDAR was published in 2001 by Avila,

Vernin & Sánchez[7].

SCIDAR has been very successfully exploited for several site characterization

studies[49, 7, 63]. An automatically controlled SCIDAR instrument is installed at

the Jacobus Kapteyn Telescope (JKT), at the observatory Roque de los Muchachos

on La Palma island (Spain).[33]. The turbulence altitude and velocity profiles are

recovered from an analysis of the autocorrelation of scintillation patterns for bright

binary stars, recorded in the pupil plane of a large telescope. A binary star allows

the separation of atmospheric turbulent layers by triangulation. For each layer at

height h, there will be two correlated patterns of intensity fluctuations at the pupil

plane separated by a distance d. According to triangulation d = θh, where θ is the

binary separation. The measurement quantity is the normalised scintillation spatial

covariance function B(r).

B(r) =
< [I(x)− < I >][< I(x + r)− < I >] >

< I >2
(3.54)

where I(x) is the stellar intensity distribution in the pupil plane. Angular brackets

denote ensemble average. Assuming that turbulence is isotropic, so C(r)=B(r = |r|)
and < I > is independent of time. The correlation of a single star is given using
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the Wiener-Khintchine theorem Eq.(2.72) on the power spectrum of the intensity

fluctuations at the ground. The power spectrum of the intensity is rotationally

symmetric so the Fourier transform is a Hankel transform and the covariance is

equal to

B(r) = 2π

∫ +∞

0

f WI(f) J0(2πrf)df, (3.55)

where f is the modulus of spatial frequency. Then we can rewrite the previous

equation using Eq.(3.50).

B(r) = 3.9× 10−22π k2

∫ +∞

0

dh C2
n(h)

∫ ∞

0

df f−
8
3 sin2(πλhf 2) J0(2πrf) (3.56)

Eq.(3.56) can be rewritten as to show the altitude dependence

B(r) =

∫ ∞

0

dh Bh(r, h), (3.57)

Bh(r, h) = 3.9× 10−22π k2 C2
n(h)

∫ ∞

0

df f−
8
3 sin2(πλhf 2) J0(2πrf) (3.58)

Bh(r, h) represents the intensity fluctuation autocorrelation density per unit altitude

produced by a layer located at an altitude h. The width of the autocorrelation peak

is related to the height of the layer. The correlation length or average scale size of

the scintillation is proportional to the width of the Fresnel zone
√

λh.

The double star covariance can be derived from the single star covariance as[61]:

B∗∗(r, θ) =

∫

h

dh{ 1 + α2

(1 + α)2
Bh(r) +

α

(1 + α)2
(Bh(r − θh) + Bh(r + θh))}, (3.59)

where α is relative magnitude of the binary star and θh separation of scintillation

pattern. Short time exposures around a few milliseconds are used to freeze the

turbulence. The C2
n(h) profile is obtained by solving an inverse problem. If the plane

of analysis of the scintillation is the same as that of the pupil plane of the telescope,

the turbulent layer near the ground does not produce scintillation (scintillation

develops after some significant propagation distance). The layer is “invisible”, so

the idea is to defocus the image by using different set of lenses or by moving the

observation plane to be able to resolve the scintillation effect due to the other layers,

typically those near the ground. This is the concept of the generalised SCIDAR[31].

Fig. 3.4, shows the principle of double star SCIDAR

A fairly large telescope (diameter ≥ 1 m) and fast sensitive light detectors are

needed to realise a profile monitor. Another disadvantage of classical or generalised
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Fig. 3.4: Classic and Generalised Double Star SCIDAR (courtesy of Cruz et al.[24]).

SCIDAR is that a double star is used, meaning that one needs to find a bright

enough binary with a good separation. This puts a significant limitation on sky

coverage. The height resolution is typically about 200− 500m[49].

3.4 Single star SCIDAR

An alternative, simple profile monitor (spatio-temporal correlation measurement of

the profile) can in principle be constructed with a small telescope using a single star

as a light source. A number of spatial filtering techniques applied to scintillation

signal detection from single stars have also been proposed for this particular prob-

lem [57, 51]. The two-colour single star scintillation cross-correlation has also been

used[16]. Recalling previous expressions Eq.(3.57) and Eq.(3.58), the autocorrela-

tion for a single star is given by

B(r) =

∞∫

0

dhBh(r, h), (3.60)
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We can re-write this to reveal the dependence upon the refractive index fluctuations

B(r) =

∞∫

0

dh C2
n(h) K(r, h), (3.61)

K(r, h) = 3.9× 10−22π k2

∫ ∞

0

df f−
8
3 sin2(πλhf 2) J0(2πrf) (3.62)

where f is the modulus of spatial frequency. The autocorrelation contains the effect

of all the layers encountered during the propagation process. Thus the autocorre-

lation is a superimposition of N peaks stacked, corresponding to N layers (see Fig.

3.5). For a visible wavelength of 550 nm, in the height range from 0 up to 25 km

the atmospheric induced scintillation has a scale sizes ranging from 2 to 12 cm. In

principle therefore a telescope with an aperture greater than this may be used to

quantify B(r).
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Fig. 3.5: Autocorrelation for different layers. Layer at 1 km (dashed-dotted), layer

at 10 km (dashed), sum of layers at 1 and a 10 km (solid).

We can rewrite this equation in matrix form

B(r) = K(r, h)C2
n(h) + n(r), (3.63)

where K represents the kernel, which contains the theoretical autocovariance of a

single star, B the autocovariance of the scintillation pattern and n(r) the noise.
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Fig. 3.6: Single star SCIDAR.

Eq.(3.63) is a Fredholm equation of the first kind [80, 12] . We need to invert it to

obtain the refractive index profile C2
n(h). Unlike double star SCIDAR , the inverse

problem single star SCIDAR is difficult because the covariance data consists only

of a central peak. It is important that the central peak is sampled sufficiently to

allow different measurements of it to be clearly distinguished.

3.4.1 Wind profile

The wind vector and its modulus can be found from a single star spatio-temporal

cross-correlation analysis[15, 49]. If a layer at altitude h moves with a horizontal
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wind velocity vector vh(r), at ground level the flying shadow produced propagates

with the same velocity. Using Taylor’s hypothesis of frozen turbulence, after a time

τ the two elements are separated by vh(r)τ

B(r, τ, h) = B(r−vτ, h) = 3.9×10−22π k2

∫ ∞

0

df f−
8
3 sin2(πλhf 2) J0(2π(r−vτ)f)

(3.64)

From B(r, τ, h) we can extract the velocity of each layer, their altitude and refractive

index structure constant. The position of each peak gives the vector vh(r) of this

layer. The shape of the peak gives the altitude h and the height of the peak gives

the integrated value of C2
n(h)δh. With the wind profile in addition of the C2

n profile,

one can derive other atmospheric parameters of interest such as the coherence time

of the wavefront[58]

τ0 =


2.905k2

∞∫

0

v
5
3 dhC2

n(h)



− 3

5

(3.65)

3.4.2 Multi-generalised single star SCIDAR

Based on the concept of a single star SCIDAR used in generalised mode we develop

in this thesis the concept of a single star SCIDAR with different conjugation planes

(see Fig. 3.8). The feasibility is based upon work of Johnston[44], Klückers[48]

and Stevens[66]. With multiple measurement planes the problem to solve can be

written as

BMP (r) = KMP (r, h)C2
n(h) + n(r), (3.66)

where BMP denotes a matrix containing now P sets of single star covariance vectors

measurements. The single star covariance matrices Ki for i = 1, 2, ...P contain

theoretical covariances that are offset from the origin by the distance between the

measurement layer and the telescope aperture. BMP contains P one dimensional

covariance slices, end to end, corresponding to the average covariances calculated

from the scintillation measurements made at each plane. The conjugations below

the telescope pupil allow retrieval of information about the boundary layer thanks to

the extra propagation letting scintillation develop. The conjugations above permit

better estimation of the layer located at this altitude; the effect of the layer at

this altitude is not detected in the resulting autocorrelation thus this layer is one

layer less to find in the overall other layers contributing. If the layer has a big
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contribution, in particular the resolution of this layer is improved. If we call j the

layer at height hc, the autocorrelation conjugated at this plane is

Bhc(r) =
∑

i 6=j

Bi (3.67)

3.4.3 Other Single star profilers

There are other single star turbulent profilers using a small telescope, and different

techniques to extract atmospheric parameters.

3.4.3.1 Spatio-temporal single star SCIDAR

This uses cross-correlation with 2 exposure times to separate contributions of dif-

ferent layers by their velocity difference. Wind dispersion in layers is included in

the model. An instrument with a 25-cm telescope is under development[72, 37].

Results show good agreement with balloon sounding[36].

3.4.3.2 MASS

MASS (Multi-Aperture Scintillation Sensor) is based on the analysis of the scintil-

lation of bright stars. The spatial scale of the scintillation depends on the distance

to the layer. This dependence is used to separate the contributions from different

layers by means of zones of a small telescope pupil (8-14 cm), providing a profile of

the optical turbulence strength with a low vertical resolution (dh/h ≈ 0.5), and no

information about the ground layer. The turbulence profile is derived from the sta-

tistical processing of the series of photon counts[70]. A comparison between double

star SCIDAR and MASS had been made in Mauna Kea[71]. DIMM (Differential

Image Motion Monitor[64]) gives the overall atmospheric turbulence profile, ro and

is used by most observatories. A combination of MASS with DIMM, MASS-DIMM,

which gives information about the ground layer has been tested[69].

Profile restoration

The first analytical solution was given by Peskoff in 1968[59]. Later Jarem[43] used

Tikhonov’s regularisation technique in profile inversion. This method was tested

on a simulated profile by Stevens[66]. However, this is a typical inverse problem:
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Fig. 3.7: Kernel of the single star SCIDAR.

the matrix K is ill-conditioned (the ratio of the largest eigenvalue to the smallest

one is called the condition number of a matrix; large condition numbers mean ill-

conditioned matrices). In such cases, direct inverse solution is so sensitive to the

noise in the input data that it is useless in practice. The covariance matrix for the

single star SCIDAR is highly singular [48], see Fig. 3.7.

An investigation of the sensitivity of the single star and crossed beam techniques

to noise illustrates this and is achieved by decomposing the corresponding m × n

K matrix, using the singular value decomposition (SVD)

K = UΣV †, (3.68)

where Σ is a diagonal matrix containing the singular values of K and V † is the

transpose matrix of V . Matrices U and V contain respectively the left and right

singular vectors of K[60]. The scintillation from a single star at a number of dif-

ferent planes, obtained by propagating the wavefront over different distances, is

used to improve the conditioning of the inverse problem. The blurring process due

to propagation in the atmosphere causes information to be lost. In this case it is

necessary to incorporate additional information to enable the components of the

problem to be estimated. In astronomical, or incoherent, imaging it is common to

enforce positivity in an attempt to achieve the closest possible match to the actual

object. This comes from the fact that we are measuring intensities that are positive.

Thus the components of the problem are positive. It is also necessary to regularise

the deconvolution problem to enable its inversion in the presence of noise. Due to

the ill-posed nature of the deconvolution problem, the quality of the reconstruction
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depends on the assumed noise statistics and the available object prior information.

Fig. 3.8: Sequenced generalised single star SCIDAR.

3.4.4 Other atmospheric profilers

3.4.4.1 In situ C2
n(h)

The measure of the refractive index fluctuation can be achieved by launching mete-

orological balloons equipped with temperature sensors[8] that can characterise the

structure constant of the temperature fluctuations C2
T (h) linked to the structure

constant C2
n(h) by the Gladstone formula Eq.(3.6). The resolution is good (5-10 m)

but the obtaining of the profile takes a long time (several hours).

3.4.4.2 SLODAR

SLODAR (SLOpe Detection And Ranging) is based on an analogous binary star

triangulation method as the double star SCIDAR . It is an extension based on angle

of arrival theory. The turbulence altitude profile is recovered from the time-averaged

spatio-angular cross-correlation of the instantaneous wavefront slopes, measured in

the telescope pupil plane by using a Shack-Hartmann wavefront sensor to observe

a bright binary star[77]. Wind velocity is measurable as well. The resolution in

altitude varies between 150 and 1500 m, depending on the double star separation

(like in double star SCIDAR ). SLODAR is able to characterise very well turbulence
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at lower altitudes ( < 2 km). Additionally, a larger magnitude differential can be

tolerated compared to double star SCIDAR technique[78]. A portable version is in

development with a 40 cm telescope[79].

3.4.4.3 3D mapping of atmospheric turbulence

There are efforts to obtain a 3D mapping of optical turbulence using atmospheric

numerical models. Those techniques use meteorological parameters such as tem-

perature, wind speed and topography of the site. The refractive index fluctuation

profile and other atmospheric parameters can be obtained[54, 55].
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Inverse problems

An inverse problem occurs when the causes have to be found indirectly from the

effects. The estimation of the C2
n(h) profile from a set of generalised single star

SCIDAR correlation functions is a typical inverse problem. The problem can be

formulated as g = Sf , where f represent the causes and the operator of the system

S is the linear operator integral, convolution or a matrix. The operator S, the

measurement, is that of the forward problem. The inverse problem is estimating f

given the data g; in practice, measurement noise plays a crucial role. An example

of an inverse problem in astronomy is the deconvolution of images knowing the

point spread function of the system, to find the object. Finding the object is not

straightforward because different objects can give the same measurement image.

Most inverse problems cannot be solved analytically, and computational methods

are essential. Discretisation can lead to ill-posedness in matrix equation inversion.

We talk then of an ill-posed problem. In that case, there may be ways to “cure”, or

regularise by different techniques.

4.1 Mathematical basis

This section will treat the operator properties that are needed to understand inverse

problems.
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4.1.1 Linearity and boundedness

An operator is denoted H : U −→ V, where U and V are both Hilbert spaces1. An

operator H acts on functions f in space U and transforms f to function g in space

V.

g = Hf (4.1)

The operator H is linear if

H(f1 + cf2) = Hf1 + cHf2 (4.2)

for all scalars and all vectors in U. A linear operator H is bounded if there a positive

number M such that for all f

‖g‖ = ‖Hf‖ ≤ M ‖f‖ (4.3)

A bounded operator cannot produce an image of infinite norm when operating on

a vector of finite norm. The smallest M verifying the inequality is called the norm

of H, and we write M = ‖H‖.

4.1.2 Range and domain

Consider a linear operator H : U −→ V, where the two spaces are Hilbertian as

above. The set of vectors f of U is called the domain of H. The vector g is the

image, denoted D(H), of the vector f . The output set has to be distinguished

between the actual values and the possible values. The possible values represent

the space V, while the actual values of images g, called range of H, denoted R(H),

can be a subspace of V.

4.1.3 Continuity and compactness

The operator H is continuous if and only if

if a sequence fj ∈ U, when lim
j→∞

, then lim
j→∞

Hfj = Hf . (4.4)

Bounded linear operators are continuous and vice versa. A compact operator[10]

is one that maps a bounded sequence into one having a convergent subsequence.

1 appendix A gives more details about Hilbert spaces
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A sequence fj in U is bounded (‖fj‖ ≤ C), then the sequence Hfj contains a

convergent subsequence if the operator H is compact. Any linear operator with a

finite-dimensional range is compact. In particular, matrix operators are compact.

4.1.4 Matrix operators

Considering an M × N real matrix H, that can be viewed as a compact linear

operator, mapping RN to RM , we have in a matrix form

g = Hf (4.5)

or more explicitly

gm =
N∑

n=1

Hmnfn (4.6)

The number of linearly independent rows or columns of H is called the rank, denoted

rank H, R(H), or simply R. The rank is always less than or equal to the smaller

of the number of rows M or columns N . R ≤ min(M, N).

4.1.5 Adjoint operator

The adjoint operator of a bounded operator H, noted H† mapping from V to U is

the unique operator such that

(g2,Hf1)V = (H†g2, f1)U (4.7)

It can be shown that the norm of the adjoint operator H† of a bounded operator

H is the same as that of H;
∥∥H†∥∥ = ‖H‖. If H† = H for bounded operator

H, possible for U = V, the operator is said to be self-adjoint or Hermitian. If

H† = H−1, again possible for U = V, the operator is said to be unitary.

4.1.6 Null space of an operator

The null space of a linear operator H, noted N (H) is the set of vectors f in U that

satisfy Hf = 0

N (H) = {f ∈ U; Hf = 0}. (4.8)

The null space is a linear subspace and also is closed if the operator H is continuous.

If the operator is a convolution operator representing an imaging system, the null
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space is also called the subspace of the invisible objects, because any objects f give an

image which is zero. The vectors f can be uniquely decomposed as f = fmeas + fnull.

4.1.7 Inverse operator

The inverse operator of a bounded operator H, noted H−1 mapping from V to U

is the operator such that

HH−1 = IV (4.9)

H−1H = IU (4.10)

The inverse operator, H−1 does not necessarily exist, while the adjoint operator H†

does. If the operator H in invertible (H−1 exists) the operator is said non-singular,

and it has no null space. If the operator is not invertible it is said to be singular.

4.1.8 Singular value decomposition

The singular value decomposition of an operator is a very important tool.

4.1.8.1 Eigenanalysis

We recall briefly the notions of eigenvalues and eigenvectors. For a linear operator

H, U −→ U, the eigenvectors and eigenvalues satisfy the eigenvalue equation

Hψ = λψ (4.11)

The eigenvectors are ψ and the eigenvalues are λ.

4.1.8.2 Singular value decomposition of a matrix

When a M ×N matrix H is singular we can decompose the matrix using a singular

value decomposition (SVD)[10, 12]. We assume H is a matrix with rank R, mapping

EN to EM . H can be written as

H = UΣV† (4.12)

where U = [u1, . . . uM ] is M ×M orthonormal matrix, V is N × N orthonormal

matrix, and Σ is M ×N a rectangular diagonal matrix with entries sj{j = 1, ..., R}
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and 0 elsewhere. Conventionally we order the singular values sj by decreasing order,

s1 ≥ s2 ≥ ... ≥ sR ≥ 0, (4.13)

Note that in Eq.(4.12) it is the adjoint of V. Matrices U and V are unitary, i.e

U†U = IU and V†V = IV. They are orthogonal as well , meaning that < ui,uj >=

δij and < vi,vj >= δij. U = ui, i = 1, ..., R are the singular vectors. The ratio

C = s1/sR of the largest to smallest singular value, is called the condition number

of a matrix. A matrix with a large condition number is called ill-conditioned and

can lead to big round-off errors. Relative errors in the data, δg and in the solution

δf are related to the condition number

‖δf‖
‖f‖ ≤ C

‖δg‖
‖g‖

4.1.8.3 Hermitian operators

For any linear operator H, U −→ V, we can construct two Hermitian (self-adjoints)

operators,

H = H†H, H̃ = HH† (4.14)

The first operator maps U −→ U, and the second maps V −→ V. It is easy to

show that H̃ satisfies also the property of an adjoint operator. Another prop-

erty is that they are nonnegative-definite (or positive semi-definite) and compact.

Nonnegative-definite means that the eigenvalues are real and nonnegative, or equiv-

alently (Hu,u)U ≥ 0. Using the properties of adjoint operators and using the norm

definition for a vector u we can write (Hu,u)U = (H†Hu,u)U = (Hu,Hu)V =

‖Hu‖2
V ≥ 0. We can show the same properties for the other Hermitian operator H̃.

If we use the results for the SVD of a matrix, for the operator H this time, writing

the eigenvectors u and eigenvalues Hu = λu, it becomes ‖Hu‖2
V = λ2 ‖u‖2

V ≥ 0.

Eigenvalues for H̃ are in fact the same[12]: the two operators H and H̃ have the

same eigenvalues.

Hun = H†Hun = s2
nun (4.15)

H̃vn = HH†vn = s2
nvn (4.16)
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4.1.8.4 Pseudo-inverse of a matrix

The pseudo-inverse, or Moore-Penrose inverse, of a linear operator H, represented

by a matrix H , noted H+ is a generalisation of the inverse. The Moore-Penrose

pseudo-inverse exists and is unique for all matrices, all operators with a finite-

dimensional range and many integral operators. For an M ×N matrix, the pseudo-

inverse is a matrix N ×M that satisfies

HH+H = H (4.17)

H+HH+ = H+ (4.18)

(HH+)† = HH+ (4.19)

(H+H)† = H+H. (4.20)

If the inverse of (H†H) exists, then the pseudo-inverse is defined as

H+ = (H†H)−1H† (4.21)

4.1.8.5 Pseudo-inverse and SVD

If R = N , then all the singular values are non-negative but non-null and the pseudo-

inverse is, with the SVD decomposition,

H+ = V(Σ†Σ)−1Σ†U† (4.22)

If R < N , we have R non-null singular values and N − R null values. The matrix

(Σ†Σ)−1 does not exist, but we can keep the non-null singular values, s1 > s2... >

sR > 0, and define the R × R matrix ΣR = diag(s1, ..., sR), and “shrink” UR and

VR to R×R matrices, smaller versions of U and V.

We can define a general pseudo-inverse for any rank R, as

H+ = VΣ+U† (4.23)

where

Σ+
ij = s+

i





1
sj

for i = j and j ≤ R

0 otherwise
(4.24)
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4.2 Well-posed and ill-posed problems

The definition of a well-posed (correctly set) problem is due to Hadamard[38]. Given

the mapping H : U −→ V, equation

g = Hf (4.25)

is well-posed if the solution f

(a) exists for any data. For each g ∈ V, there exists a f ∈ U such that g = Hf .

(Existence)

(b) is unique Hf1 = Hf2 only if f1 = f2 (Uniqueness)

(c) depends continuously on data. ∀ sequence fj ∈ U, when limj→∞ Hfj = Hf ,

then limj→∞ fj = f . H−1 is continuous. (Stability)

The first requirement means that for each set of data there exists an object

called the solution. The second means that the solution found is unique. The

third requirement means that infinitesimal changes in the initial data result in

infinitesimal changes in the solution, or that H is continuous. An equation is

ill-posed if it is not well-posed. To find a solution if the problem is ill-posed, it

might be necessary to enlarge the solution space to respect existence, and introduce

constraints for uniqueness. In imaging, the operator can be an integral operator or

a convolution common in astronomy.

4.2.1 Linear integral equation

The general form of a linear integral equation is

g(x′) =

∫ β

α

h(x′, x) f(x) dx, (4.26)

where h(x′, x) is called the kernel of the transform. Eq.(4.26) is a linear Fredholm

integral equation of the first kind[80]. The Fredholm first kind integral operator

is a compact operator on L2. Convolution and the Fourier transform are integral

transforms.
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4.2.2 Functional

A functional, that will be denoted J , is a mapping which associates a number (real

or complex) to each vector, or function. The functional is an important concept in

the inverse problem field.

4.2.3 Resolution

The direct solution can be given using singular values decomposition by f = H+g.

The pseudo-inverse is obtained by singular value decomposition (Eq.(4.23)).

fd = VΣ+U†g (4.27)

=
∑
si≥0

s+
i (u†igi)vi (4.28)

Instability arises due to division by small singular values. A filter can be applied

to the small singular values keeping only the singular values bigger than a certain

value for instance.

A key component of the functional is some measure of the distance in data

space between g and Hf , so we are led to define the discrepancy functional or data-

agreement functional J data(Hf ,g). In least-square data methods, this functional

is just the squared Hilbert space norm.

Jdata(Hf ,g) = ‖g −Hf‖2 (4.29)

In all cases the noise is another parameter to take into account. The equation

Eq.(4.25) becomes

g = Hf + n (4.30)

where n represents the noise. The noise is a very important parameter and can

change the way of dealing with the problem.

In the presence of (random) noise, a statistical approach is used.

4.3 Regularisation methods

A reasonable way to compute a meaningful “smooth” solution, i.e. a solution which

has some useful properties in common with the exact solution to the underlying
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and unknown-unperturbed problem, is to filter out the high-frequency components

associated with the small singular values. Regularisation suppresses the recovery of

singular vectors that correspond to small singular values, which are the components

that transmit the fine details. Regularisation methods are techniques to get closer

to the the accurate solution in the absence of noise. The idea of regularisation

is to consider a set of approximate solutions depending on a positive parameter

called the regularisation parameter. Regularisation makes a compromise between

ill-posedness and accuracy. The next section treats the Tikhonov regularisation

method.

4.3.1 Tikhonov regularisation

The regularisation functional is

Jreg(f) = ‖f‖2 (4.31)

J (Hf ,g) = ‖g −Hf‖2 + γ ‖f‖2 (4.32)

The regularisation parameter γ quantifies the trade-off between data fidelity and

stability. The parameter acts as a filter on the singular values[12].

4.3.2 Regularisation parameter selection

The choice of the regularisation parameter is important and difficult. In this section

we consider the case of Tikhonov regularisation. Different analytical approaches

exist to find the value of the regularisation parameter[75, 12]. They fold in two

categories either some statistics parameter (such as variance) about the noise is

known or do not. A brief overview will be presented here. First we define some

quantities that will be used in these theories.

The predictive error is defined as

pγ = H(fγ − f) = Hfγ −Hf (4.33)

The regularised solution can be expressed as

fγ = Rγg = Rγ(Hf + n) (4.34)
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where Rγ is the regularisation matrix

The regularised residual is defined as

rγ = Hfγ − g (4.35)

We define the symmetric influence matrix to be

Aγ = HRγ (4.36)

Then using this influence matrix the predictive error and regularised residual be-

come

pγ = (Aγ − I)Hf + Aγn (4.37)

rγ = Hfγ − g = (Aγ − I)g (4.38)

4.3.2.1 Generalised Cross-validation

The Generalised Cross-validation[12] (GCV) is based on the norm of the regularised

residual ‖rγ‖2. The method consists of finding the regularisation parameter γ that

minimises the GCV functional

GCV(γ) =
1
n
‖rγ‖2

[ 1
n
Tr(I−Aγ)]2

(4.39)

where Tr denotes the trace operator. The trace of a matrix N × N A is the sum of

the main diagonal elements:

Tr(A) =
N∑

i=1

Ai,i

4.3.2.2 L-curve

The regularised residual norm ‖rγ‖2, as well as the norm of the extra information

which is the solution itself ‖fγ‖2 have to be minimised. It is based on a graphic

representation of the logarithm of the regularised residual norm against the log-

arithm of the norm of the solution that has L shape. The optimal choice of the

regularisation parameter is one that corresponds to a point on the curve near the

“corner”. This point represents a solution with a favourable balance between the

two types of errors.[40, 14].
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4.3.2.3 Unbiased Predicted Risk Estimator

The Unbiased Predicted Risk Estimator (UPRE) is based on the norm of the pre-

dictive error, but the variance σ2 of the noise (white) n is used to find the optimal

regularisation parameter[75]. The method consists in searching for the regularisa-

tion parameter γ minimising the expected value of the predictive risk U(γ)

U(γ) =
1

n
‖rγ‖2 +

2σ2

n
Tr(Aγ)− σ2 (4.40)

4.4 Statistical methods

Statistical methods take into account the random nature of the noise. The data

are seen as a realisation of a random process. Statistical methods give an efficient

means of dealing with measurement errors.

4.4.1 Maximum likelihood estimation

One general method of finding an estimate is the maximum-likelihood (ML) estima-

tion. The noise probability is considered and the data and the objects are considered

as deterministic. The likelihood probability distribution is given by the probabil-

ity distribution of the noise. The likelihood function is defined as the likelihood

function for the object f given the data g by

L(f) = p(g|f) = p(n = g −Hf) (4.41)

The log likelihood is

l(f) = ln p(g|f) (4.42)

The maximum-likelihood estimator is the vector f that maximises the log likelihood

function

f̂ML = argmax
f

{l(f)} (4.43)

The case of Poisson noise and Gaussian noise are two main cases, with sometimes

a mixture between the two.
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4.4.1.1 Gaussian Noise

For white Gaussian noise Eq.(2.73) the covariance matrix is symmetric (section

2.4.3.1) with independent and identical distributed elements and the same known

variance value σ2, then K = σ2IM . The determinant of the covariance matrix is

det(K) = det(σ2IM) = (σ2)M .

p(g|f) = (2πσ2)−
M
2 exp

[
− 1

2σ2

M∑
i=1

(gi − [Hf ]i)
2

]
(4.44)

ln p(g|f) = constant− 1

2σ2

M∑
i=1

(gi − [Hf ]i)
2 (4.45)

Jdata(Hf ,g) =
M∑
i=1

(gi − [Hf ]i)
2 =‖g − Hf‖2 (4.46)

The ML estimation for a Gaussian noise (white or not) is equivalent to the

least-square method.

f̂ : max
f

{p(g|f)} ⇔ min
f
‖g −Hf‖2 (4.47)

4.4.1.2 Poisson Noise

The log probability for when the noise is a Poisson noise is given by

ln Pr(g|f) =
M∑
i=1

{−[Hf ]i + gi ln[[Hf ]i]− ln gi!} (4.48)

Since ln(g!) is a constant that does not affect the minimization, we can write the

fit-to-data functional as

Jdata(Hf ,g) =
M∑
i=1

{−[Hf ]i + gi ln[[Hf ]i]} (4.49)

Note that in this case the discrepancy functional is not the Euclidean norm. It is

defined from the Kullback-Leibler distance (KL) dKL(g1,g2) =
∑M

i=1{g1i
ln(

g1i

g2i
)}

4.4.2 Bayesian estimation

This is a straightforward application of Bayes’ theorem. In Bayesian methods, both

the data and the object are treated in a probabilistic manner and it permits the use
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of a priori information about the object. Expressing l(f) = ln p(g|f) using Bayes’

rule keeping the term of the object, Eq.(2.59) the maximum a posteriori estimator,

or MAP estimator is given by

f̂MAP = argmax
f

{ln p(g|f) + ln p(f)} (4.50)

p(f) is called the a priori probability density function.

4.4.3 Maximum entropy

The maximum entropy principle is like other Bayesian methods in that it makes

explicit use of prior information, the entropy of the object[65]. Those techniques

have an extra functional in the form of ln(f). The method explicitly constrains the

solution to be positive. Entropy techniques have been used for double star SCIDAR

[7, 49].

4.5 Optimization

An iterative search for the solution can be used as regularisation. It is applicable for

large problems or badly conditioned matrices. There is an iterative way of finding

a solution to minimise unconstrained problems. If the form is quadratic the set of

solutions is convex. If H has null functions, many different f can give the same

Hf and hence the same likelihood; which one is obtained by the algorithm depends

on the null components of the initial estimate. A general approach to functional

minimisation is to choose a search direction in the reconstruction space, take a

step in that direction, and repeat the process iteratively. The iteration rule for

algorithms in this class is thus

f̂k+1 = f̂k + τkdk, (4.51)

where dk is the search direction for the kth iteration and τk is the size of the step

in that direction.
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4.5.1 Functional minimisation

The minimisation of the fit-to-data functional in the least-square sense (Eq.(4.46))

is

‖H f − g‖2 = (Hf − g,Hf − g) (4.52)

= (Hf ,Hf)− (Hf ,g)− (g,Hf) + (g,g) (4.53)

Using properties of scalar product for real space (see appendix A) we have

(Hf ,g) = (g,Hf)∗ = (g,Hf) (4.54)

Eq.(4.53) becomes

‖H f − g‖2= (Hf ,Hf)− 2(Hf ,g) + (g,g) (4.55)

When Tikhonov regularisation is used, minimising the functional (Eq.(4.32)) is

equal to the quadratic form as follows

q(f) =
1

2
f †Qf − f †b + c (4.56)

with

Q = H†H + γI (4.57)

b = H†g (4.58)

and c a constant.

q(f) =
1

2
(Qf , f)− (b, f) + c (4.59)

Replacing the value of Q and b in Eq.(4.59)

q(f) =
1

2
((H†H + γI)f , f)− (H†g, f) + c (4.60)

=
1

2
(H†Hf , f) +

1

2
(γIf , f)− (H†g, f) + c (4.61)

Rearranging the equation with transpose operator properties, Eq.(4.61) becomes

q(f) =
1

2
(Hf ,Hf) +

1

2
γ(f , f)− (Hf ,g) + c (4.62)

q(f) =
1

2
(Hf ,Hf)− (Hf ,g) +

1

2
γ(f , f) + c (4.63)
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Noting that if we set γ to zero and the constant c is taken to ‖g‖2, Eq.(4.63) is

equal to Eq.(4.53)

We can lighten the notation of the function leaving the dependence of f only;

J (Qf ,b) = J (f) The gradient of J (f) is ∇Jk = Qf − b. It is equal to zero for

Qf = b

The second derivative of J (Qf ,b) is called the Hessian and is equal to

HessJ (Qf ,b) = Q = H†H + γI (4.64)

The matrix Q = H†H + γI is symmetric positive definite. Q is symmetric if

Q = Q†.

Q† = (H†H + γI)† = H†(H†)† + γI† = (H†H + γI) (4.65)

Positive definite matrix means that the eigenvalues are real and positive or that

the eigenvalues are all positive. Equivalently we can write (Qf , f) > 0. (Qf , f) =

((H†H + γI)f , f) = ((H†Hf , f) + γ(If , f) > 0. λ2 ‖f‖2 + γ ‖f‖2

As Q is symmetric definite positive, the functional J (Hf ,g) is strictly convex

and the minimiser f̂γ is unique for the value of γ. The minimiser is given by

f̂γ = (H†H + γI)−1H† g (4.66)

Tikhonov regularisation acts as a filter on the small singular values. Using SVD

decomposition one can shown that Eq.(4.66) can be written as

f̂γ = wγfd (4.67)

=
N∑

i=1

si (u
†
igi)

s2
i + γ

vi (4.68)

The Tikhonov filter is

wγ =
s2

s2 + γ
(4.69)

4.5.1.1 Steepest descent

The method of steepest descent is the simplest of the gradient methods. The search

starts at an arbitrary point and then slides down the gradient; the descent converges

slowly because it has to take a right angle turn after each step, and consequently

search in the same direction as earlier steps. Finding the minimum of J (f) requires
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Fig. 4.1: Steepest descent method.

setting the gradient to zero, which we see is equivalent to solving the set of linear

equations Hf = g.

The direction search is the negative gradient dk = −∇Jk, and the step τk is

found using a line search of τk that satisfies τk = argmin
τ>0

{J (fk+1 + τkdk)}. The

new iteration is given by fk+1 = fk + τkdk. For a symmetric positive definite matrix

Q an optimal step exists and is given by

τk =
∇J †

k∇Jk

∇J †
k Q∇Jk

(4.70)

4.5.1.2 Conjugate gradient descent

The minimum is reached in fewer steps than would be the case using the method

of steepest descent. In the conjugate gradient descent technique, the new search

direction is taken to be orthogonal to the previous one with respect to the quadratic

matrix Q[53]. Given a symmetric matrix Q, two vectors d1 and d2 are said to be

Q-orthogonal, or conjugate with respect to Q, if (d†1Qd2) = 0. The method is as

follows:

Start with the direction given by the initial negative gradient d0 = −∇J0, then

use dk to update the iteration fk+1 = fk + τkdk, where τk is defined as

τk = −∇J
†
k dk

d†kQdk

(4.71)

Calculate the new conjugate gradient direction dk+1 , dk+1 = −∇Jk+1 + βkdk

βk =
(∇J †

k+1Qdk)

d†kQdk)
(4.72)

Non-quadratic conjugate gradient For the non-quadratic case other tech-

niques exist like Fletcher-Reeves and Polak-Robiere methods. The differences are
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that τk is found using a line search and that β is defined differently. We have

βk =
(∇J †

k+1∇Jk+1)

(∇J †
k∇Jk)

(4.73)

for the Fletcher-Reeves method or

βk =
(∇Jk+1 −∇Jk)

†∇Jk+1

∇J †
k∇Jk

(4.74)

for the Polak-Robiere method.

4.6 Non-negativity

If a non-negative solution is sought, a constraint to the solution has to be used. The

solutions will be searched on the set of non-negative objects. For the unconstrained

problem, the minimum is found for the f that solves

∂J (Hf ,g)

∂fi

= 0 (4.75)

for i at f = f̂ .

Now if a constraint of positivity is applied, the problem to solve is

min J (Hf ,g) subject to f ≥ 0 (4.76)

The minimum may not occur at a point of zero derivative; it can also occur when

one or more of the components fn are zero, so long as the derivative is positive at

this point. More conditions to find a minimum arise





fi
∂J (Hf ,g)

∂fi
= 0

∂J (Hf ,g)
∂fi

≥ 0
(4.77)

for i at f = f̂ . These are the Karush-Kuhn-Tucker (KKT) conditions. These

conditions imply that if ∂J (Hf ,g)
∂fi

> 0, then fi = 0 for i at f = f̂ and conversely.

4.6.1 Reparametrisation

Reparametrisation[21] allows to find a positive solution rewriting the object f as a

positive quantity such as an exponential or a square quantity.
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For a square reparametrisation, f = x2

J (Hx2,g)sr =
∥∥Hx2 − g

∥∥2
+ γ

∥∥x2
∥∥2

(4.78)

For an exponential reparametrisation f = ez

J (Hez,g)er = ‖Hez − g‖2 + γ ‖ez‖2 (4.79)

Note the exponential parameterisation has a physical interpretation in image restora-

tion. If the entries in f represent pixel intensities, then the entries in ez represent

densities[39].

The drawback is that these reparametrisations change the error surface creating

other extrema. The functionals are not convex and there is not a unique and stable

solution.

4.6.2 Feasibility set and active set

The feasibility set, or constraint set Ω is the set of objects that are non-negative,

defined by

Ω = f |f ≥ 0 (4.80)

The active set is a set that is enclosed in the feasible set. For nonnegativity con-

straint the feasible set is the vectors that are greater than or equal to 0. The feasible

set is given by Ω(f) = fi|fi ≥ 0. In the discrete case, where the objects to estimate

is described by f = fi, i = 1, ..., N , the active set is given by A(f) = {i|fi = 0} .

The complementary set to the active set is the inactive set, noted I(f)

The projected gradient of J (Hf ,g) at f on the feasibility set Ω is given by

[∇ΩJ (Hf ,g)]i





∂J (Hf ,g)
∂fi

i ∈ I(f)

0 if i ∈ A(f)
(4.81)

Let [DI(f)] denote the diagonal matrix defined as

DI(f)ii =





1 if i ∈ I(f)

0 if i ∈ A(f)
(4.82)

Then

∇ΩJ (Hf ,g) = DI(f) ∇J (Hf ,g) (4.83)
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4.6.3 Projector on the feasibility set

The projector operator in the feasible set is the operator that sets to zero the

negative values.

PΩ{f} =





fi if fi ≥ 0

0 otherwise
(4.84)

4.7 Single star SCIDAR problem

Tikhonov-Miller regularisation[42, 80, 12] can be used to perform the inversion of

the double star SCIDAR [46]. The Tikhonov regularisation method was also used

by Stevens[66]. This method seems to be interesting to apply for the single star

SCIDAR, and is the main contribution of this thesis.

Reverting to the inversion problem, we can rewrite Eq.(3.63) in matrix form,

using the formalism of this chapter:

g = Hf + n, (4.85)

where H represents the M ×N matrix kernel K(r, h) containing the theoretical au-

tocovariance of a single star, g the autocovariance B(r) M×1 vector measurements

and n the M × 1 vector noise. We need to invert Eq.(4.85) to obtain the refrac-

tive index profile C2
n(h), represented by f the N × 1 vectors. The problem to be

solved is an ill-posed one. The restoration of the profile is achieved by a maximum

likelihood approach leading to a least square method solution assuming Gaussian

noise using a quadratic programming[45]. The use of several measurement planes

improves the condition of the matrix for a better resolution of the inverse problem.

With p measurement planes Eq.(4.85) becomes

gMP = HMP fMP + n, (4.86)

where HMP = [H1, ...,Hp]
T is a matrix containing now m single star theoretical

autocovariance matrices Hi, with i = 1..p corresponding to the m measurements

planes and gMP = [g1, ...,gp]
T is obtained by putting the matrix of single star

covariance corresponding to each measurement plane gi with i = 1..p into a vector.

Assuming there are enough photons and we are limited only by the read out noise
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of the detector, Gaussian noise in the autocorrelation data is assumed, and the

function to minimise is a quadratic form:

Jdata(Hf ,g) = ‖HMP f − gMP‖2 , (4.87)

where g is the autocorrelation data. A Tikhonov regularisation Eq.(4.31) is utilised

to regularise this ill-posed problem. The new quadratic form to minimise is:

J (Hf ,g) = ‖HMP f − gMP‖2 + γ ‖fMP‖2 (4.88)

Quadratic programming[45] is used for inversion. The algorithm is as follows:

1 Start with a initial estimate f0

2 The active set is defined for ∂J (Hf ,g)
∂fi

> 0 and fi < 0. A new estimate is

obtained by the conjugate gradient method on the active set to obtain the

new estimate f̃k.

3 Update the new estimate fk+1 = P{fk + tk(f̃ − fk)}, where tk in the range

0 < tk ≤ 1 is the bigger value ensuring Jdata(Hfk+1,g) ≤ Jdata(Hfk,g)

4 The new active set is updated then go back to step 1.
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Single star SCIDAR equipment

and data collection

The single star SCIDAR instrument was designed and constructed by Derek Coburn,

a researcher in the Applied Optics Group, in consultation with myself and Prof.

Dainty. The instrument is designed to record a sequence of pupil images of the

same target at different defocussing heights (i.e. generalised SCIDAR mode). The

single star SCIDAR instrument had to adhere to a number of requirements. A short

exposure time, on the order of a millisecond, is needed to freeze the turbulence,

and thus the scintillation pattern. The frame rate has to be high so that many

statistically independent frames can be obtained to yield a large signal to noise ratio

in the ensemble average autocovariance signal. A frame rate of about 100 Hz was

achieved with the system. To get a good sky coverage, the sensitivity of the camera

has to be high to access more stars in the sky. The change of height conjugation

has to be fast. Ideally a real time output of the autocovariance is desirable, with

the corresponding C2
n(h) profile as well. The operation of acquisition, processing

and alignment should ideally be done remotely. The instrument has to be portable

to move from site to site. It should not have to be dedicated to a specific large

telescope.

5.1 Instrument considerations

For a generalised SCIDAR system to reproduce scintillation patterns for target con-

jugate heights, a number of primary constraints must be satisfied [32]. The complex

amplitude produced by one layer at an altitude h, propagates to the telescope pupil,
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crosses the pupil and finally propagates to a conjugate plane at a distance d is given

by [32]

Ψd(r) ∝
[
F r

λd
[P (r)] ∗Ψh(

−hr

d
) exp(

iπr2

λd
(
h

d
))

]
(5.1)

In Eq.(5.1) P is the pupil function of the telescope and F r
λd

means a Fourier trans-

form evaluated at r
λd

.

The first constraint, related to the inherent diffraction limit of the instrument on

the system imaging and the impact of a quadratic phase term on system imaging,

is satisfied provided the size of the limiting aperture of the system is

D À
√

λh (5.2)

where h is the height of the layer of interest. The second condition relates to the

diffraction limited performance in reproducing the phase and amplitude variations

associated with the turbulence at the target layer. The coherence length must be

wide enough to be sampled by the point spread function of the system imaging.

The width of the point spread response associated with the limiting aperture of the

system must be smaller than the average patch radius r0 over which the phase of

the wavefront changes by π. The corresponding condition is,

D À λh

r0

(5.3)

The phase corrugations of the perturbed wavefront at the layer do not impact on

the recorded scintillation data. Following similar reasoning it is necessary for the

point spread function of the instrument to be sufficiently narrow to resolve the

scintillation at the given layer in order to avoid blurring out of the scintillation.

Therefore,

D À λh

δr
, (5.4)

where δr is the minimum scale size of the scintillation produced by the layers above

or below the target height. Together, these conditions indicate the height in the

atmosphere (or, in generalised mode the height below the telescope pupil) that it

is possible to conjugate to while faithfully reproducing the scintillation pattern for

the target pupil given the pupil width of the imaging system. In practical terms

portable telescopes whose aperture sizes range from 200 - 400 mm in width, for a

wavelength of 550 nm, are limited to target heights less than 1 or 2 km from the
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Fig. 5.1: Scintillation image of Capella at pupil plane (a), defocussed at +2km (b)

and defocussed at +5.8km (c). Diffraction effects are significant for a defocussing

of 5.8 km.

telescope pupil in order to minimise the impact of the instrument’s diffraction limit

on recorded patterns. Outside of this regime the diffraction effect of the instrument

must be folded in to the analysis used to retrieve the C2
n profile from the data and

in general the assumption that the statistics of the scintillation is invariant across

the sensing aperture is lost. Fig. 5.1 shows the scintillation patterns for different

defocussing. Fig. 5.1c clearly shows the impact of the telescope finite pupil on a

defocussed pattern.

5.2 Instrument design

The single star SCIDAR instrument consists of a pupil imaging system bolted to the

back flange of a 250mm diameter, f/10 Meade telescope. The LX200 series telescope
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MT = 1/303
fT = 2.5 m

DT = 250mm

3.7 " - 94 mm 

10"-254 mm
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ML = (MT)2 = 1/91809
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Fig. 5.2: Correspondance between telescope pupil and detected image.

2.5m

Telescope pupil

Conjugate imaging

TM = 1/320

flip mirror and

PinholeTelescope focus

Retiga EXi camera

f = 2.5 m

D = 250mm Arm 1

Arm 2Meade LX200

eyepiece

Fig. 5.3: Details of the single star SCIDAR system.

used was chosen with a view to the potential portability of the final single star

SCIDAR device. The inherent benefits of this telescope are its global positioning

system (GPS) assisted alignment, target “goto” functionality to point at the desired

target and automated tracking. Its weakness is its poor mechanical construction: it

is not designed for the mounting of scientific instruments. In operation, the telescope

tracking error causes the defocussed pupil images of the SCIDAR instrument to

move on the detector plane. Although the field of view of the instrument is of the

order of 1 arcminute, excessive tracking error is undesirable as it can invalidate

the measurement and requires that a larger area of the sensing camera be read,

slowing frame acquisition times. With this in mind the tracking accuracy of the

scope was supplemented by a separate tracking telescope fitted with an autoguider

camera. This system, which piggybacks on top of the main tube of the LX200, gives

a tracking accuracy in principle of the order of an arcsecond.

Fig. 5.3 shows detail of the system optics and Fig. 5.4 shows a photograph of the
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Pupil Imaging 
system

Camera stage

Fig. 5.4: System in the dome in Galway.

setup. The pupil imaging system at the output of the telescope contains two main

optical arms with a flip mirror to direct the light along one or other as required. Arm

1 of the instrument houses an eyepiece to enable target star acquisition and centring.

The optics in this arm can be interchanged with a DIMM measurement instrument if

required to enable independent assessment of the turbulence conditions. At the time

of development it was hoped that results from the instrument would eventually be

assessed by comparing them with measurements obtained from simultaneous DIMM

measurements. Arm 2 of the instrument contains the main pupil imaging and

detection optics for the instrument. This conjugate imaging system in combination

with the computer controlled camera stage allows heights from + 5.8 km to - 4.5 km

to be targeted by the image sensor (in practice the telescope pupil limits the range

to less than this). In operation the single star SCIDAR instrument produces de-

magnified pupil images of width ∼ 0.78 mm (MT = 1/320). This folds the lateral

extent of the pupil targets from ∼ 10km in object space down to 100mm in the

conjugate image space (ML = M2
T ).

The system employs a Retiga EXi CCD camera interfaced to a standard desk-

top computer to sense and record the scintillation patterns formed by the conjugate

imaging optics. This non-intensified camera has an rms read noise of 8e− with a

spectral response extending from 400nm through the near infrared at a wavelength

of 900 nm. In operation only a sub region of the 1.4 Mpixel CCD array is needed
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Fig. 5.5: Layout of the single star SCIDAR system.

to capture the extent of the pupil images. In addition, pixel binning is employed

to gives a spatial sampling size per pixel of ∼0.8mm×0.8mm in the pupil for a

binning by 4. Combining the region of interest and pixel binning give a maximum

attainable frame rate of 110fps for exposure times of the order of 1ms (a typi-

cal exposure needed to freeze the scintillation). A star of visual magnitude 0.08

gives an approximate photon flux of over the bandwidth of the instrument of 3400

photons.cm−2.ms−1[3].

To conjugate to the required pupil heights the camera is moved laterally along

the optical axis of the system by means of a stepper motor controlled stage. The

stage enables the camera to be displaced in 0.025 mm steps in the image space

at a maximum step rate of 300 steps/sec enabling the system to transfer quickly

between target pupil heights. (In object space the camera motion translates to a

rate of 800 m per second).

The camera and positioning stage are controlled by a purpose built PC using
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Fig. 5.6: Sequenced generalised single star SCIDAR.

acquisition software. This code has two main modes of operation “alignment and

pupil image preview” and “test” mode. The active mode and basic settings of the

system are controlled via a window-based graphical user interface and a text script

file. In test mode the acquisition sequence is configured by a script file which dictates

predefined exposure times, number of frames per sequence, target conjugate heights,

camera region of interest and pixel binning setting. By modifying this simple text

script it is possible to modify the details of an acquisition run quite readily. In

the current system the live pupil images are archived to disk for off line analysis

with only the basic image processing being performed on them in real time, namely

dark image subtraction and flat field image correction. A basic test run consists of

a cycle through a series of conjugate image planes (typically conjugate to +2km,

+1km, 0km, -1km and -2km as specified by the script file). At each test plane a

series of several thousand frames are recorded for the predefined frame exposure

specified in the test configuration script. The basic data set consists of a series of
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several thousand uncompressed tiff files indexed by a log file which records the time

of acquisition of each file and target plane details as well as error status (if any) for

frame reads and real time image processing.

5.3 Calibration

As the instrument performance relies on targeting different layers in the atmosphere,

it is necessary to calibrate the height conjugation realised by the system. The

calibration is performed by assessing relative pupil displacements of binary star

components as a function of target heights programmed for the system. This enables

the telescope entrance pupil and true conjugate magnification of the system to be

determined.

5.4 Data reduction

Data reduction consists of reducing the thousands of scintillation frames to autoco-

variance data. The different conditions to reduce diffraction effects Eqs.(5.2), (5.3)

and (5.4) are assumed to be respected. For a given pupil height, the scintillation
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Fig. 5.7: Scintillation pattern for no pupil defocus.

index and average intensity per pixel are first calculated. A typical frame obtained
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for no defocus is shown in Fig. 5.7. We calculate the relative normalised intensity

for each frame[49, 68, 46]

In
i (x, y) =

Ii(x, y)− < I(x, y) >

< I(x, y) >
, (5.5)

where < I(x, y) > is the average intensity (Fig. 5.8). Pupil wander in defocus

mode causes the scintillation pattern image to move on the detector. The pupil

wander is due to two reasons; the autoguider did not track the star accurately and

the main one is due to the tip/tilt atmospheric turbulence component of the phase

changing and making the pupil image move on the detector. The tip/tilt effect

gives a displacement of ±6 pixels for target h=1km. Here, the average intensity is

obtained by re-centring each frame by use of cross-correlation of the frames with

the first one. The method is accurate to ± 1 pixel. Thus, in the normalisation

pixels around on the edges of the average intensity are set close to zero.
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Fig. 5.8: Average scintillation pattern at the pupil plane obtained over 2000 frames.

The scintillation index can be calculated by averaging the relative intensities

over all the N frames.

σi(x, y) =
1

N

N∑
i=1

In
i (x, y) (5.6)

The autocorrelation of each frame is obtained by Fourier transform

Bn
i (x, y) = F−1{F{|In

i (x, y)|2}} (5.7)
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The mean autocorrelation(Fig. 5.9) is taken on the average of the frames

Bmean(x, y) =
1

N

N∑
i=1

Bn
i (x, y) (5.8)

In order to account for the inherent suppression of data within the correlation
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Fig. 5.9: Mean autocorrelation.

plane for large separation the resulting correlation is divided element by element

by the autocorrelation of the pupil function (Fig. 5.10)(i.e. following the standard

approach employed in binary SCIDAR [49]). This reflects the fact that there are

fewer data autocorrelation of the average pupil function defined by points in the

image to assess autocorrelation signal as the baseline separation is increased. The

corrected autocorrelation is then (Fig. 5.11)

B(x, y) =
Bmean(x, y)

[Pup(x, y) ? Pup(x, y)]
(5.9)

Assuming isotropy of turbulence, B(x, y) is used to obtain the one dimensional

covariance B(r) built over radial cuts of the two dimensional correlation function

(Fig. 5.12). The final autocorrelation is obtained by making an average over the

radial distance (Fig. 5.13). This procedure is performed for all different altitude

conjugations. Finally each autocorrelation B(r)d is concatenated to build the sys-

tem response for the turbulence conditions BMP (r) (Fig. 5.14). This average is
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Fig. 5.10: Autocorrelation of the pupil function.

made over an extended period ' 5 minutes.

BMP (r) = [B1B2...BP ] (5.10)

The theoretical autocorrelation used for the inversion, to obtain the C2
n(h) pro-

files is built by concatenating the autocorrelation at the different measuring planes.

The wavelength used is the mean wavelength from the spectrum of the star over

the bandwidth of the camera.

Preliminary results of data obtained at an observing site in Galway, Ireland

(between April 2005 and September 2005) with the instrument show the scintillation

index σ2
I for stars close to range from 0.05 to 0.35 indicating the scintillation is within

the weak perturbation regime.
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Fig. 5.11: Corrected normalised autocorrelation.
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Fig. 5.13: One dimensional averaged autocorrelation.
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Fig. 5.14: Concatenated autocorrelation cuts from 5 defocussing values. The au-

tocorrelations are ordered from the bigger altitude conjugation above the telescope

pupil up to the bigger one below the telescope.



Chapter 6

Single star simulations

When a plane wave from a star propagates through atmospheric turbulence, it

undergoes deformation due to the refractive index fluctuations. We assume weak

phase perturbations, which is valid for observing at a good site at least for zenith

angles less than approximately 60 deg. The structure of the atmosphere is assumed

to be made of a finite number of thin layers, with free space in between where the

wave propagates according to Fresnel propagation. The phase screens used in the

simulations follow Kolmogorov statistics and were generated using the midpoint

interpolation method[47]. In addition, weak turbulence theory is used, i.e. the

value at the origin of the autocorrelation function, the scintillation index, is very

much less than one.

6.1 Phase screens

Fast phase screen code provided by R.A Johnston1 has been used to generate Kol-

mogorov phase screens using the midpoint displacement technique[41]. Before using

them in the propagation process, a check has been made to see if they were following

the Kolmogorov law. 1,000 phase screens have been generated for different screen

resolutions and different D
r0

ratio. D is the size of the screen and r0 is the Fried

parameter Eq.(3.16). A D
r0

ratio equal to one means the average patch of coherence

in the phase screen r0 is equal to the whole size of the screen. The more the ratio

increases the more patches of coherence will be present. Two examples for different

D
r0

are given in Fig. 6.1 and in Fig. 6.2.

1 Rachel Johnston of Applied Research Associates New Zealand
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Fig. 6.1: Phase screen with D
r0

= 13. The colour scale is in radians.

One verification is to check if the structure function as defined in Eq.(6.1) was

equal to the theoretical one Eq.(6.2). The structure function of the phase, Dφ(∆r)

as defined in Eq.(3.9) is

Dφ(∆r) =< [φ(r)− φ(r + ∆r)]2 > (6.1)

It has the following expression in near field,

Dφ(∆r) = 6.88(
∆r

r0

)
5
3 (6.2)

The calculation was made horizontally and vertically, for almost all the combina-

tions size screens D
r0

. The Fig. 6.3 shows the horizontal,vertical and theoretical

structure function for a screen resolution of 512x512 and a D
r0

ratio of 13 using a

loglog scale. We can see that three lines are almost overlapping.

6.2 Propagation through turbulence

Fig. 6.4 illustrates the propagation through the atmospheric turbulence of a plane

wave (at altitude h), passing through one layer (with thickness δh) and arriving to

the ground. The propagation of a plane wave passing through one layer at altitude
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Fig. 6.2: Phase screen with D
r0

= 50. The colour scale is in radians. Note that this

figure looks the same statistically as Fig. 6.1 but the scale is different.

h with thickness δh, and arriving at the ground is expressed in two steps (section

3.2.1):

1. Through turbulent layers

Ψh(r) = Ψh+δh(r) exp(iφ(r)), (6.3)

with φ(r) the phase perturbation induced by the layer.

2. Fresnel propagation

Ψ0(r) = Ψh(r) ∗ 1

iλh
exp(

iπr2

λh
), (6.4)

where ∗ denotes convolution.

The first regime is a simple multiplication of functions (or matrices). The wave

undergoes Fresnel propagation ph(r) (section 3.2.1), which is the second term of

Eq.(6.4), over a distance h.

ph(r) =
1

iλh
e

iπr2

λh (6.5)

To evaluate Ψ0(r) after the Fresnel propagation in Eq.(6.4) we use the convolution

theorem (Eq.(2.21)) of the Fourier transform making a multiplication of the Fourier
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Fig. 6.3: Comparison of numerical horizontal (dash-dotted), numerical vertical (dot-

ted) and theoretical (solid) phase structure function in loglog plot. ∆r is in pixel

spacing.

transform of two functions of a convolution and taking the inverse Fourier transform

of the product. The function transfer of the turbulence, Ph(f) is defined, taking the

Fourier transform of the impulse response ph(r).

Ph(ρ) = e−iπλhf2

, (6.6)

Ψ0(r) = F−1 [F{Ψh(r)}.Ph(f)] (6.7)

6.2.1 Sampling

For numerical simulation some sampling issues have to be met. They concern the

sampling of phase of the phase screen, of the process of propagation from the phase

screen to the observing plane, and the sampling of the scintillation pattern.
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Fig. 6.4: Propagation through one turbulent layer.

6.2.1.1 Phase

The first sampling issue is that for the Kolmogorov phase screen to be well sampled,

neighbouring pixels have to be separated by less than π radians.

φ(r)− φ(r + ∆r) ≤ π (6.8)

Using the statistical theoretical covariance of the phase (Eq.(6.2)) obtained from

Kolmogorov theory

< [φ(r)− φ(r + ∆r)]2 >= 6.88(
∆r

r0

)
5
3 ≤ π2 (6.9)

This give a phase sampling limit

∆r ≤ 1.2417r0 (6.10)

Simulating a telescope of diameter D=25 cm aperture with N ×N=32x32 or 64x64

pixels, the maximum sampling is D
32
∼ 8 mm. This is smaller than the requirement

of Eq.(6.10); for a typical r0 of 10cm we have ∆r ∼ 0.08r0
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6.2.1.2 Fresnel propagation

Using the same argument, the variation of the argument of the transfer function of

the atmosphere (Eq.(6.6)) must be less than π.

πf2∆hλ ≤ π (6.11)

This gives the maximum propagation distance

h ≤ 4D2

λ(2N − 1)
(6.12)

This gives for a diameter D=25 cm, a number of pixels N=64 and a wavelength

λ=550 nm, a maximum distance of 3579 m. However starting with a bigger size

screen, keeping the same sampling ∆r, a screen of 4×D= 1m with 4×64 =256 pixels

allows a limit of 14 km. This permits us to make simulation with layers located at

least 10 km distant from the ground.

6.2.1.3 Scintillation

Another sampling issue concerns the scintillation pattern. The sampling has to be

fine enough to sample the size of the scintillation that is of the order of the first

Fresnel zone. It has to be less than half of of the smallest size of the irradiance

fluctuation

∆r ≤
√

λz

2
(6.13)

For a range from 0 to 20 km, the typical size of the scintillation varies between 2 and

12 cm. This gives a higher sampling of ∆r ≤ 1 cm still respected for ∆r = 0.25
32
∼ 8

mm

6.2.2 Edge effect

Edge effects are a problem of the simulations when we go into Fourier space to do

the convolution product. As explained above, a bigger phase screen limits the edge

effect. We always start with a screen size at least 4 times bigger. In addition, an

apodising window can be used directly, in the direct space, on the incoming wave

before Fresnel transform[2]. We use a Gaussian window to smooth the transfer

function of the atmosphere in the Fourier space[44] which corresponds to another

convolution of the wavefront with a Gaussian. A windowing to smooth the edges to
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attenuate the pixel blurring in the resulting field after propagation. Starting with a

big screen prevents edge effects from affecting the part of interest, and the window

prevent the effect to propagate in the region of interest. In practice edge effects do

not corrupt the region of interest and the Gaussian window is to avoid propagation

of those effects.

w(r) =
1

2πσ2
exp(− r2

2σ2
) (6.14)

To simulate the different defocussing planes we propagate until the pupil plane

then back propagate or forward propagate to obtain the different scintillation im-

ages.

Mainly simulations have been made for a 64 × 64 pixels screen size, although

the inversion has been applied on real data for a 32 pixel autocorrelation slice.

The results are checked to correspond to the theoretical autocorrelation defined in

Eq.(3.58).

Fig. 6.5, Fig. 6.6 and Fig. 6.7 show simulations with 64×64 pixels of scintillation

pattern, normalised autocorrelation and radial cut, for a layer located at 10 km with

a value of ro of 40 cm realised with 2000 frames. The different altitude conjugations

are +5 km, +2.5km, 0km, -2.5km and -5km.

Fig. 6.5 displays simulated average intensities for the 5 measurement planes.

From Fig. 6.5a to Fig. 6.5e we can see that the scintillation pattern gets bigger.

The measurement plane is going further from the layer, so the scintillation develops

creating bigger patterns.

The normalised autocorrelations are presented in Fig. 6.6. The isotropy of the

autocorrelation is visible in the middle and a bit less on the edges but the values of

the autocorrelation further from the centre get closer to zero.

Fig. 6.7 shows the normalised averaged simulated autocorrelation radial cuts

compared to the theoretical function. The 5 figures show a good agreement of the

simulations with the theory.

6.2.3 Modelling diffraction effect

The blurring effect of the reimaging system can be neglected in the simulations

but including the effect of diffraction for big defocussing distance, requires the

development of the theory and a full expression of the system that has not been
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realised yet. Thus, the simulation does not account of the pupil propagation for

extra propagation in defocus mode.
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tion at -2.5km.
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tion at -5km.

Fig. 6.5: Simulated scintillation patterns for 5 five different conjugation planes for

a layer at 10 km with a r0 of 40 cm over 2000 frames.
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Fig. 6.6: Simulated 2 dimensional normalised autocorrelation for 5 five different

conjugation planes for a layer at 10 km with a r0 of 40 cm over 2000 frames.
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(c) Simulated average autocorrelation cuts

for pupil conjugation at the pupil plane.
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(d) Simulated average autocorrelation cuts

for pupil conjugation at -2.5km.
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(e) Simulated average autocorrelation cuts

for pupil conjugation at -5km.

Fig. 6.7: Simulated autocorrelation cuts for 5 five different conjugation planes for

a layer at 10 km with a r0 of 40 cm over 2000 frames.



Chapter 7

Results

This chapter presents results obtained from the simulations and from data obtained

during a campaign in October 2005 at La Palma. These results demonstrate the

feasibility of the technique.

7.1 Results from simulation

For a ±2 km defocus, diffraction effects are not so significant (see Figure 7.1). Re-

trieved profiles for different signal to noise ratio (SNR), with 5 observing planes

located at +2,+1,0,-1,-2 km from the telescope pupil, with 1 kilometre height res-

olution have been simulated. Effects of diffraction appear to be significant when

defocussing to a larger distance above the telescope as can be seen in Figure 7.2,

where the distance is 5.8 km.

As indicated in section 5.1 the impact of the instrument’s diffraction effects

associated with the telescope pupil are not strongly in evidence for target heights

below 2 km. As an initial validation of the inversion algorithm and the capability of

the instrument to retrieve useful data giving the target height constraints simula-

tions were performed to establish the system ability to locate predefined turbulent

layers. In this study the approach was tested using the theoretical autocovariance

responses produced for an atmosphere possessing two distinct layers, one at 1km

and the other at 10km. These were chosen to have an integrated C2
n(h)δh for each

layer of 8.34×10−14m
1
3 . Given a wavelength of 550nm each layer has a correspond-

ing r0 of 40 cm, with the resulting r0 for the wavefront after passing through both

turbulent layers of 26.4 cm. To build up the data set defined in Eq.(5.10) the auto-

covariance response for the layers were modelled for 5 observing planes located at
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Fig. 7.1: SCIDAR data frames of Capella at pupil plane (left) and defocussed to

2km (right).
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Fig. 7.2: SCIDAR data frame of Capella with measurement plane conjugated at

5.8km above the telescope aperture.
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Fig. 7.3: Estimated C2
n(h) profiles with an altitude resolution of 1 km for 4 different

noise level. SNR=10dB (red), SNR=20dB (black), SNR=40dB (green) and noise

free (blue). The ideal case is 2 layers at 1km and 10km simulated with C2
n(h)δh =

8.34× 10−14m
1
3 for each.

+2, +1, 0, -1, -2 km from the telescope pupil. The primary interest in the study

was to understand the sensitivity of the inversion algorithm to system noise. With

this in mind the process of simulation and signal inversion was repeated for different

background noise levels in the autocorrelation signal.

The retrieved profiles are shown in Fig. 7.3. The signal-to-noise ratios are

expressed in terms of the average signal level in the “measured” autocorrelation

to the rms white Gaussian noise: in terms of the peak of the autocorrelation, an

SNR of 10dB is equivalent to an rms noise of approximately 5% of the peak value

Fig. 7.5. Different values of noise are added Fig. 7.5. The retrieved profiles show

excellent agreement with the initially assumed values, and the retrieved r0 values

were all within 3%.

The results obtained vary in the value of the refractive index fluctuation of the
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Fig. 7.4: Simulated autocorrelations data for 5 measurement planes at

-2km,-1km,0,+1km,+2km, produced by two layers located at 20km and 1km.

layers. For small signal to noise ratios the inversion algorithm is unstable and gives

additional strong layers apart from the two layers at 1 and 10 km. Other layers can

be present in the retrieved profiles for a high SNR but with a much smaller weight

compared to the value of the two main layers. More regularisation is needed for

high SNR and the width of the peak in the C2
n(h) estimate increases and the height

falls, with the overall area under the profile remaining relatively changeless. The

range of the regularisation parameter γ ranges between 10−6 and 10−3.

7.2 Results from the campaign at La Palma

A measurement campaign lasting for a week in November 2005 was carried out at

the Observatorio del Roque de los Muchachos, on La Palma island. The equipment

was installed on the JKT (Jacobus Kapteyn Telescope). Three nights were actually

usable. The alignment and the weather conditions made it difficult to observe

on the other nights. Different stars with magnitudes from 0 to 3 were observed,

using sequences of 2000 frames per defocus value. Seven defocus planes used were

from 2.4km, 1.2km, and 0.6km below telescope pupil, with the corresponding planes

above the pupil 0.6km, 1.2km and 2.4km , and the plane pupil. The camera exposure

in all the scintillation data taken was 1ms, with binning of 2 (64×64 pixels) and 4

(32×32 pixels) for each star data set corresponding to spatial averaging of 3.9×3.9
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Fig. 7.5: Simulated autocorrelations single star SCIDAR data with different Gaus-

sian noise values. (a) corresponds to a SNR of 60dB, (b) corresponds to a SNR of

40dB, (c) corresponds to a SNR of 20dB.
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mm and 7.8×7.8 mm respectively in the pupil. The target star was also taken to

be as close as possible of the zenith.

7.2.1 Reduced autocovariances

The whole average autocorrelation is not usable due to noise and re-centring as

shown in Fig. 7.6. The useful portion of the autocorrelation is on average 180 mm

instead of the 250 mm for the full pupil. In addition perfect collimation was hard

to achieve, which creates scintillation patterns with different size for different pupil

conjugation within the same set.

0 50 100 150 200 250 300 350

 0.02

0

0.02

0.04

0.06

0.08

0.1

Star: Capella   0.08 magnitude   binning x4 1200m

Pupil offset (mm)

no
rm

al
is

ed
 a

ut
oc

or
re

la
tio

n

Fig. 7.6: Average autocorrelation for the bright star Capella (mv ' 0.08).

Autocorrelations for a magnitude 3.27 star with a binning×4 show a peak at

the origin (Fig. 7.7) associated with the read noise. The average photon flux for

this star and this binning is around 100 photons per pixel. The read noise becomes

dominant at the origin of the autocorrelation.

7.2.2 C2
n(h) profile estimates

Retrieval of the refractive index fluctuation profile is made for an altitude resolution

of 1km. Only the five central planes of measurement are kept in order to stay

with the range where the effect of diffraction is minimised as discussed in section
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Fig. 7.7: Average autocorrelation for δ Andromeda (magnitude 3.27). Note the

peak at the origin.

5.1. The regularisation parameter γ can be found automatically using the L-curve

method, giving a range of values determined to be around the standard deviation

of the autocorrelation functions, for magnitude up to 2. Parameter values were

experimentally tried until an acceptable solution to check the consistency of the

method. In the case of a magnitude of about 3 the L-curve technique fails. This

might be due to the implementation of the program for the level of noise. The value

of the parameter has been found by trials. Examples of retrieved C2
n(h) profiles are

shown in Fig. 7.8a, Fig. 7.8b, Fig. 7.9 and Fig. 7.10.

7.2.3 Estimation of the error

To check the accuracy the estimated value of the seeing β (Eq.(3.18)) was calcu-

lated from the estimates Ĉ2
n(h) profiles, shown in Figs. 7.8a, 7.8b, 7.9 and 7.10,

and checked against the values of the seeing given by the seeing monitor of the

Isaac Newton Group of Telescopes (RoboDIMM) archives[1]. In addition, following

Klückers et al. [49] we define the error on the retrieved autocovariance data as

εB =

√
< (B − B̂)2 >

< B2 >
, (7.1)
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Fig. 7.8: Estimated C2
n(h) profile using Capella (magnitude 0.08 star) for a

binning×2. (b) was taken ten minutes later. Four layers at 1km,∼8 km, ∼11

km and ∼20 km are present in both profiles, as well as one around 20 km. In the

first run (a) shows an extra layer at 0km. The contribution of the layer located at

∼11 km in (a) in half less important than in (b).

where B̂ is the autocovariance calculated from the profile estimates as B̂ = K ˆC2
n(h).

Fig. 7.11a, Fig. 7.11b, Fig. 7.12 and Fig. 7.13 show comparison between the data

retrieved from the Ĉ2
n(h) estimates and real data and the error, and the values of

the retrieved seeing with the one from RoboDIMM.

The value of the estimated seeing is relatively close to the one given by RoboD-

IMM.

The values of the error on the autocovariances estimate, εB are around 20% (c.f.

Fig. 7.11, Fig. 7.12, Fig. 7.13). It is good considering full autocovariance functions

are not used, and the presence of the peak due to read out noise at the origin for one

star. Moreover the collimation of the instrument was not perfect giving different

scintillation patterns with different scales. Even for a star of magnitude 3.27 (δ

Andromeda) the error is low (Fig. 7.13).

The 4 sets of turbulence profiles show similar general shape. The distribution of

the layers appears discrete, composed of three or four dominant layers. The main

contribution by far in the profiles is the closest layer above the telescope aperture.

This layer corresponds to the boundary layer as expected. The other turbulent
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Fig. 7.9: Estimated C2
n(h) profile using Capella (magnitude 0.08 star) for a

binning×4. Three main layers are present; a strong one at 0 km and two less

important at 8 km and 15 km.

layers are located higher in the atmosphere, with two layers located around 10 km.

Fig. 7.8a and Fig. 7.8b show two turbulence profiles obtained with few minutes

delay. They both have a turbulent layer at 2 km. In the second set the layer at the

ground do not appear any more and is only located at 1 km. These 3 other layers in

Fig. 7.8b are still present but their refractive index is higher. These changes reflect

the fluctuations of the turbulence strength in the atmosphere and in intensity that

is expected to be bigger according to the experimental autocorrelation that have

higher values too as seen in Fig. 7.11a and Fig. 7.11b. The set of experimental au-

tocorrelations for Capella with a binning by 4, Fig. 7.12, shows a value at the origin

for the autocorrelation corresponding to an altitude conjugation of + 1.2 km (first

autocorrelation) that seems to a bit high compare to the other ones. Considering

that the scintillation index for the lowest plane below the telescope represents the

contribution due to all the layers, the scintillation index should be the bigger one,

and the scintillation index in a plane above the telescope should be lower within

the noise fluctuations. This particular autocorrelation revealed to have more bad

frames and is noisier that the rest of the set of autocorrelations. The profile for δ

Andromeda presents high value wider layers (Fig. 7.10). The noise is more impor-
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Fig. 7.10: Estimated C2
n(h) profile using δ Andromeda (magnitude 3.27 star) for a

binning×4. Mainly four layers are present; a very strong one at 0 km, one 1 km

and two less important at 8 km and 15 km.

tant because the star is fainter, then more regularisation is needed to find a solution

creating broader solutions with lower values of the turbulence strength. However,

the presence of the peak at the origin of each autocorrelation (Fig. 7.13) tend more

likely to increase the strength of the turbulence in the estimate.

The seeing retrieved from the profiles are always bigger than the seeing value

at the site of measurement. That means that the intensity of the turbulence layers

should be in reality smaller (Eq.(3.16) and Eq.(3.18)) and are overestimated, and

then that the structure constant of the refractive index should be smaller in the

profiles.
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Fig. 7.11: Estimation of the error for Capella data binning by 2 for two consecutive

runs. The experimental autocovariance is represented by a solid red line and the

retrieved autocovariance in blue dots.
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Fig. 7.12: Estimation of the error for Capella data with binning by 4. The exper-

imental autocovariance is represented by a solid red line and the retrieved autoco-

variance in blue dots.



Chapter 7. Results 102

0 100 200 300 400 500 600 700 800
 0.05

0

0.05

0.1

0.15

0.2

RoboDIMM seeing:0.58056’’, Seeing retrieved: 0.8862’’   error: 22.8161%

no
rm

al
is

ed
 a

ut
oc

or
re

la
tio

n

Data retrieved SAO 54058   3.27 magnitude

Fig. 7.13: Estimation of the error for δ Andromeda data with binning by 4. The

experimental autocovariance is represented by a solid red line and the retrieved

autocovariance in blue dots.



Chapter 8

Conclusion and future work

8.1 Summary

A remote sensing technique that uses an analysis of the scintillation to obtain al-

titude turbulence strength profiles was presented. The single star SCIDAR instru-

ment is a 25-cm telescope with an imaging system at its back designed to record a

sequence of pupil images of a single star at five different defocussing height.

Simulations using Fresnel diffraction of wave propagation through atmospheric tur-

bulence were made to simulate scintillation patterns of the instrument. Those

simulations were used to test a least-square method using Tikhonov regularisation

method to retrieve the turbulence profiles from SCIDAR data. The results obtained

with this inversion method on simulations gave satisfactory results.

Structure constant refractive index fluctuation profiles were obtained from exper-

imental data gathered from an observing site. The inversion technique provided

encouraging results. We have shown that we can obtain profiles using scintillation

produced by a single star for bright stars of magnitude greater than three.

Better star tracking would be useful and a better re-centring technique would allow

to make full use of the autocorrelation function. Collimation should be improved to

maintain a constant pupil width for different conjugate pupil heights. The algorithm

can be improved especially to determine the optimum regularisation parameter γ

for an automatic approach. For bright stars the value can be usually found auto-

matically but it shows real weakness for dimmer stars.
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A bigger defocussing distance would allow a higher conjugation height to help the

inversion, that can be done with a, still portable, 40-cm telescope. With a 40-cm

telescope the height of conjugation can be doubled improving the inversion. It

would increase as well the signal to noise ratio.

8.2 Future work

The greatest single improvement that could be made to the method of multi-

generalised single star SCIDAR is to record the data from the various defocus

planes simultaneously, rather than sequentially as in this Thesis. This would re-

duce the variability inherent in the sequential acquisition method, and might allow

a smaller number of defocus positions to be used. The disadvantage of doing this

is that, since the optical intensity is now divided between several (e.g. 4 or 5)

channels, the photon noise for each data set increases. This could be partially offset

by using a camera with a higher quantum efficiency, such as a thinned CCD camera.

The value of the regularisation parameter is a key factor is determining the quality

of the estimated C2
n(h) profile and finding an improved and more robust method

for estimating this parameter is desirable. This probably has to be investigated by

carrying out more simulations.

In the present study, we considered, but in the end ignored, telescope diffraction

effects in the defocus data planes. This had the effect of limiting the maximum

defocus we could use. Diffraction effects could be incorporated analytically into the

theory and an initial study of this was carried out with Prof H H Barrett during his

stay in our group. The problem with this is that the system operator, composed

by the telescope aperture and the overall optical system (telescope plus reimag-

ing optics treated as a thin lens), becomes non-isoplanatic and the final expression

becomes very complicated. However, if the single star SCIDAR method is to be

implemented, this should be pursued.

Finally, a critical comparison needs to be made between multi-generalised single star
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SCIDAR as described in this Thesis, and competing methods such as the MASS

and, in particular, SLODAR. SLODAR uses Shack-Hartmann wavefront sensing,

and astronomers are very familiar with this technique. Another advantage is that

the inversion procedure for SLODAR appears to be much simpler than the tech-

niques described here. There may also be other advantages, for example it may

have some fundamental advantage, but that is not clear. A detailed comparison of

multi-generalised single star SCIDAR and SLODAR should be carried out.



Appendix A

Hilbert Spaces

In this thesis, the norm is taken to be the L2 norm. The vector space is a Hilbert

space. It is the case, for the definition of Fourier transform and then the following

functions are in an Hilbert space. Hilbert spaces is defined in this appendix and

the L2 norm.

A.1 Vectors

Vectors can be defined simply as objects that can be added to each other and

multiplied by numbers[10]. It is easily seen taking a 3D-vector f with cartesian

components (fx,fy,fz) and a scalar λ. A set of N -dimensional vectors with each

a set of N ordered numbers (or N -tuple) coordinates (f1,. . . ,fN) is a linear vector

space. Examples of linear vector space is R3, where each vector is a triplet of real

numbers. The C3 space is similar than R3 but with complex numbers.

A.2 Hilbert Space

An Hilbert space is a normed Banach space equipped with a scalar product (inner

product). A Banach space is defined as a complete normed linear space. A Hilbert

space is a generalization of an Euclidean space with infinite-dimension.

• The distance d(f1, f2) is defined from the norm ‖ f1−f2 ‖ as d(f1, f2) =‖ f1−f2 ‖.

• The space is complete meaning that the norm of every Cauchy sequence has

a limit.



Appendix A. Hilbert Spaces 107

• The norm is itself defined from the scalar product,(f1, f2) as ‖ f ‖=
√

(f , f).

A.2.1 Distance And Norm

In an N -dimensional vector space the metric or distance of two vectors f1 and f2,

denoted d(f1, f2) satisfies the following properties

(a) d(f1, f2) = d(f2, f1)

(b) d(f1, f2) ≥ 0, d(f1, f2) = 0 if and only if f1 = f2

(c) d(f1, f2) ≤ d(f1, f3) + d(f3, f2) for any f3(triangle inequality)

In R3, the distance is commonly defined by

d(f1, f2) = [(f1x − f2x)
2 + (f1y − f2y)

2 + (f1z − f2z)
2] (A.1)

The notion of distance is closely related to notion of norm. In an N -dimensional

vector space the norm of a vector f , denoted ‖ f ‖ has the properties

(a) ‖ f ‖≥ 0

(b) ‖ λf ‖=| λ | . ‖ f ‖, with λ any real or complex number

(c) ‖ f1 + f2 ‖≤‖ f1 ‖ + ‖ f2 ‖ In RN or CN we can define a particular norm

‖ f ‖p =

[
N∑

n=1

|fn|p
] 1

p

, (A.2)

called the Lp norm. For p = 2 we recognise the well known L2 norm.

‖ f ‖2 =

[
N∑

n=1

|fn|2
] 1

2

(L2 norm) (A.3)

A distance in a vector space can be defined as

d(f1, f2) =‖ f1 − f2 ‖ (A.4)

A vector space with Norm-L2 is an N -dimensional space, referred as Euclidean

space and is denoted as EN . We should note that a functional is a mapping which

associates a number (real or complex) to each vector, or function.

A.2.2 Completeness

The notion of completeness of an Euclidean space is strictly related to the notion

of convergence. The concept of convergence is linked to the concept of distance.
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A sequence of vectors fj is said to be convergent to an element a of the space if

the limit of fj −→ a when j −→ ∞. A Cauchy sequence is a sequence fj such

that ‖ fj − fk ‖−→ 0 when j, k −→ ∞. A vector space is said to be complete

when any Cauchy sequence is convergent to an element of the space. For example,

the N -dimensional Euclidean space, EN is complete for any finite N . A complete

Euclidean space is a Hilbert space. Another example of a complete metric space is

the Lp-space of p-integrable functions which is a complete metric space if p ≥ 1.

A.2.3 Scalar Products

So far we introduced the notions to define a Banach space, but the concept of scalar

product has not been introduced. In R3 the scalar product is simply defined as

(f1, f2) =‖ f1 ‖ . ‖ f2 ‖ cos(θ), (A.5)

where θ is the angle between f1 and f2. The scalar product gives from a function, or

vectors a number, it is therefore a functional. A general scalar product is a complex

valued functional. The scalar product or inner product in a general Hilbert space

U denoted (f1, f2), sometimes (f1, f2)U if necessary, has the following properties

(a) (f1, f1) ≥ 0, (f1, f1) = 0 if and only if f1 = 0 (zero element of U)

(b) (f1, f2) = (f2, f1)
∗

(c) (αf1, f2) = α(f1, f2) for any complex number α

(d) (f1 + f2, f3) = (f1, f3) + (f2, f3)

Conditions (c) and (d), imply that the scalar product (f1, f2) is a linear functional

of the first argument. From (b) and (c), we can derive that

(f1, αf2) = α∗(f1, f2). (A.6)

The norm of a Hilbert space is generated from a scalar product.

‖ f ‖=
√

(f , f). (A.7)
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A.2.4 L2 spaces

On N -dimensional Euclidean space EN , the scalar product is defined as

(f1, f2) =
N∑

n=1

f ∗1nf2n (A.8)

The Hilbert space L2(α, β), or L2, the space of complex-valued functions f(x) have

the scalar product defined as

(f1, f2) =

∫ β

α

dxf ∗1 (x)f2(x) (A.9)

The norm is defined by

‖ f ‖=
√

(f , f) =

[∫ β

α

|f ∗(x)|2
] 1

2

. (A.10)

A function f(x) belongs to L2(α, β), if the integral in Eq.(A.10) exists. L2(α, β) is

the square-integrable function space, over the range (α, β). We can extend L2 to

L2(Lq), in which born of integration are (−∞,∞), and the vector r is a qD vector

in Rq.

‖ f ‖=
[∫ ∞

−∞
dqr |f(r)|2

] 1
2

. (A.11)

(f1, f2) =

∫ ∞

−∞
dqrf ∗1 (r)f2(r). (A.12)
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